Transformada z -Tabla

Referencia: Lathi Tabla 5.1 Transformada z p492. Oppenheim tabla 10.2 p776, Schaum Hsu Tabla 4-1 p170.

No.x[n]X[z] ROC
1aδ[n]1 Toda z
1bδ[n-m]z-mToda z excepto
0 (si m>0) ó
∞ (si m<0)
2aμ[n] \frac{z}{z-1} \frac{1}{1-z^{-1}}|z|>1
2b-μ[-n-1] \frac{z}{z-1} \frac{1}{1-z^{-1}}|z|<1
3n μ[n] \frac{z}{(z-1)^2} \frac{z^{-1}}{(1- z^{-1})^2}|z|>1
4n2 μ[n] \frac{z(z+1)}{(z-1)^3}  
5n3 μ[n] \frac{z(z^2 + 4z + 1)}{(z-1)^4}  
6aγn μ[n] \frac{z}{z-\gamma} \frac{1}{1-\gamma z^{-1}}|z|>|γ|
6bn μ[-n-1] \frac{z}{z-\gamma} \frac{1}{1-\gamma z^{-1}}|z|<|γ|
7γn-1 μ[n-1] \frac{1}{z-\gamma}  
8an γn μ[n] \frac{\gamma z}{(z-\gamma)^2} \frac{\gamma z^{-1}}{(1- \gamma z^{-1})^2}|z|>|γ|
8b-n γn μ[-n-1] \frac{\gamma z}{(z-\gamma)^2} \frac{\gamma z^{-1}}{(1- \gamma z^{-1})^2}|z|<|γ|
8c(n+1) γn μ[n] \Big[ \frac{z}{z-\gamma}\Big]^2 \frac{1}{(1- \gamma z^{-1})^2}|z|>|γ|
9n2 γn μ[n] \frac{\gamma z (z + \gamma)}{(z - \gamma)^3 }  
10\frac{n(n-1)(n-2) \text{...} (n-m+1)}{\gamma^m m!}\gamma^n \mu[n] \frac{ z}{(z-\gamma)^{m+1}}  
11a|γ|n cos(βn) μ[n] \frac{ z \big(z-|\gamma | \cos (\beta ) \big)}{z^2-(2|\gamma | \cos (\beta ))z +|\gamma |^2} |z|>γ
11b|γ|n sin(βn) μ[n] \frac{ z |\gamma | \sin (\beta )}{z^2-(2|\gamma | \cos (\beta ))z +|\gamma |^2} |z|>γ
12ar|γ|n cos(βn+θ) μ[n] \frac{ rz[z \cos (\theta) - |\gamma | \cos (\beta -\theta)]}{z^2-(2|\gamma | \cos (\beta ))z +|\gamma |^2}  
12br|γ|n cos(βn+θ) μ[n]
γ = |γ| e
\frac{\big(0.5r e^{j \theta} \big)z}{z - \gamma} + \frac{\big(0.5r e^{-j \theta} \big)z}{z - \gamma^{*}}  
12cr|γ|n cos(βn+θ) μ[n]\frac{z(Az +B)}{z^2 + 2az + |\gamma|2}
 r = \sqrt{\frac{A^2|\gamma |^2 + B^2 - 2AaB}{|\gamma |^2 - a^2}}\beta = \cos ^{-1} \frac{-a}{|\gamma |}

\theta = tan^{-1} \frac{ Aa - B}{A \sqrt{|\gamma |^2 - a^2}}
13{an ; 0≤ n ≤ N-1
{0  ; otro caso
\frac{1-a^N z^{-n}}{1-az^{-1}}|z|>0

Transformada z - Tabla de propiedades


Unidades SS