3Eva_2025PAOI_T3 EDP elíptica con f(x,y)

3ra Evaluación 2025-2026 PAO I. 9/Septiembre/2025

Tema 3 (35 puntos) Use el método de diferencias finitas divididas para la ecuación diferencial parcial, también conocida como Poisson, para aproximar la solución de:

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = x e^{y}
0 < y < 1 u(0,y) = 0 u(2,y) = 2ey
0 < x < 2 u(x,0) = x u(x,1) = xe1

Utilice diferencias finitas para las variables independientes x,y

Considere la cantidad de tramos por eje como n=6 en x, m=5 en y, con tolerancia de 10-5.

a. Plantee las ecuaciones discretas a usar un método numérico en un nodo xi, yj

b. Realice la gráfica de malla, detalle los valores de i, j, xi, yj

c. Desarrolle y obtenga el modelo discreto para u(xi,yj)

d. Determine el valor de Lambda λ

e. Adjunte los archivos del algoritmo.py, resultados.txt, gráficas.png

Rúbrica: Selección de diferencias finitas divididas (5 puntos), literal b (5 puntos), literal c (10 puntos), literal d (5 puntos), literal e (5 puntos)

Referencia: Burden 10Ed ejemplo 12.2 p550

2Eva_2025PAOI_T3 EDP Elíptica, distribución de potencial

2da Evaluación 2025-2026 PAO I. 26/Agosto/2025

Tema 3 (30 puntos) Un cuadrado dieléctrico de 2 cm de lado donde los bordes están a tierra, 0 Voltios, y el vértice opuesto está a 80V. Calcular la distribución de potencial, suponiendo que la densidad de carga f(x,y) es nula.

\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} =0

Condiciones de contorno se muestran junto con la ecuación diferencial parcial

\phi (x,0) = \phi(0,y)=0 \phi (x,2) = 40x \phi (2,y) = 40y

Suponiendo que se satisface la ley de Ohm, considere Δx=Δy=1/4
Utilice diferencias finitas para las variables independientes x,y

a. Plantee las ecuaciones discretas a usar un método numérico en un nodo i,j
b. Realice la gráfica de malla, detalle los valores de i, j, xi, yj
c. Desarrolle y obtenga el modelo discreto para Φ(xi,yj)
d. Determine el valor de Lambda λ
e. Adjunte los archivos del algoritmo.py, resultados.txt, gráficas.png

Rúbrica: Selección de diferencias finitas divididas (5 puntos), literal b (5 puntos), literal c (10 puntos), literal d (5 puntos), literal e (5 puntos)

Referencia: Chapter 13: Partial Differential Equations (Part 2 - Elliptic PDEs). Lindsey Westover. 18 Marzo 2021.

2Eva_2024PAOII_T3 EDP Elíptica con función en borde superior

2da Evaluación 2024-2025 PAO II. 28/Enero/2025

Tema 3. (35 puntos) Considere la ecuación diferencial parcial, tipo elíptica descrita sobre una placa en el plano x,y:

\frac{\partial ^2 u}{\partial x^2} = -\frac{\partial ^2 u}{\partial y^2}

0≤x≤1 ; 0≤y≤1.5

Con condiciones en frontera en los intervalos definidos para una placa.

EDP Elípticau(0, y) = 0 ; u(1, y) = 0

u(x, 0) = 0

u(x, 1.5) = 100 sin(πx)

Utilice diferencias finitas para las variables independientes x,y

a. Plantee las ecuaciones discretas a usar un método numérico en un nodo i,j

b. Realice la gráfica de malla, detalle los valores de i, j, xi, yj

c. Desarrolle y obtenga el modelo discreto para u(xi,yj)

d. Determine el valor de Lambda λ, considerando Δx = 1/4 , Δy = 1/8

e. Desarrolle la ecuación para al menos tres nodos i,j diferentes y consecutivos.

f. (Extra) Estime el error de u(xi,tj) y adjunte los archivos del algoritmo.py, resultados.txt, gráficas.png

Rúbrica: Selección de diferencias finitas divididas (5 puntos), literal b (5 puntos), literal c (5 puntos), literal d (5 puntos), literal e (15 puntos). literal f extra (5 puntos)

Referencia: Chapter 13: Partial Differential Equations (Part 2 - Elliptic PDEs). Lindsey Westover. 18 Marzo 2021. https://youtu.be/0eI5zrhtEjE?si=a8rQhpEEirvMBC26&t=633

2Eva_2024PAOI_T3 EDP Parabólica

2da Evaluación 2024-2025 PAO I. 28/Agosto/2024

Tema 3. (30 puntos)

Para la siguiente Ecuación Diferencial Parcial con b = 2, resuelva usando las condiciones mostradas

\frac{\partial ^2 u}{\partial x^2} = b \frac{\partial u}{\partial t}
0 < x < 1  0 < t < 0.5
Condiciones iniciales:  u(x,0)=0
Condiciones de frontera: u(0,t)=1
u(1,t)= 2

Utilice diferencias finitas centradas y hacia adelante para las variables independientes x,t

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j

b. Realice la gráfica de malla,

c. Desarrolle y obtenga el modelo discreto para u(xi,tj)

d. Realice al menos tres iteraciones en el eje tiempo.

e. Estime el error de u(xi,tj) y adjunte los archivos del algoritmo y resultados.

Rúbrica: Aproximación de las derivadas parciales (5 puntos), construcción de la malla (5), desarrollo de iteraciones (15), literal e (5 puntos)

Referencia: EDP Parabólicas. Chapra & Canale. 5ta Ed. Ejercicio 30.15. P.904

2Eva_2023PAOII_T3 EDP desarrolle expresión

2ra Evaluación 2023-2024 PAO II. 30/Enero/2024

Tema 3 (30 puntos) Para la siguiente Ecuación Diferencial Parcial con b = 2, resuelva usando las condiciones mostradas

\frac{\partial ^2 u}{\partial x^2} + b\frac{\partial u}{\partial x} = \frac{\partial u}{\partial dt}
0 < x < 1

0 < t < 0.5

Condiciones de frontera:
u(0,t)=0, u(1,t)= 1, 0≤t≤0.5
Condiciones iniciales:
u(x,0)=0, 0≤x≤1

Utilice diferencias finitas centradas y hacia adelante para las variables independientes x,t

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j

b. Realice la gráfica de malla,

c. Desarrolle y obtenga el modelo discreto para u(xi,tj)

d. Realice al menos tres iteraciones en el eje tiempo.

e. Estime el error de u(xi,tj) y adjunte los archivos del algoritmo y resultados.

f. Con el algoritmo, estime la solución para b = 0 y b=-4. Realice las observaciones de resultados para cada caso.

Rúbrica: Aproximación de las derivadas parciales (5 puntos), construcción de la malla (5), desarrollo de iteraciones (10), literal e (10 puntos), literal f (5 puntos extra)

Referencia: EDP Parabólicas. Chapra & Canale. 5ta Ed. Ejercicio 30.15. P.904

2Eva_2023PAOI_T3 EDP elíptica, placa rectangular con frontera variable

2da Evaluación 2023-2024 PAO I. 29/Agosto/2023

Tema 3 (35 puntos) Aproxime la solución de la Ecuación Diferencial Parcial

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = \Big( x^2 + y^2 \Big) e^{xy} 0 \lt x \lt 1 0 \lt y \lt 0.5

Con las condiciones de frontera:

u(0,y)=1, u(1,y)= y, 0≤y≤0.5
u(x,0)=1, u(x,0.5)=x/2, 0≤x≤1

Aproxime la solución con tamaños de paso Δx = 0.25, Δy = 0.25
Utilice diferencias finitas centradas para las variables independientes x,y

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j

b. Realice la gráfica de malla,

c. desarrolle y obtenga el modelo discreto para u(xi,tj)

d. Realice al menos tres iteraciones en el eje tiempo.

e. Estime el error de u(xi,tj) y adjunte los archivos del algoritmo y resultados.

Rúbrica: Aproximación de las derivadas parciales (5 puntos), construcción de la malla (10), construcción del sistema lineal (15), resolución del sistema (5 puntos).

Referencia: 2Eva_IT2012_T3 EDP elíptica, placa rectangular

2Eva_2022PAOII_T3 EDP Parabólica con coseno 3/4π

2da Evaluación 2022-2023 PAO II. 24/Enero/2023

Tema 3. (35 puntos) Aproxime la solución a la siguiente ecuación diferencial parcial parabólica

\frac{\partial^2 u}{\partial x^2} = b \frac{\partial u}{\partial t}

2Eva2022PAOII_T3 EDP ParabolicaCon las siguientes condiciones de frontera:
u(0,t)=1
u(1,t)=0

Y las condiciones iniciales
u(x,0) = \cos \Big( \frac{3π}{2}x\Big)

Utilice diferencias finitas centradas para x, para t hacia adelante.

a. Plantee las ecuaciones para usar un método numérico en un nodo i,j
b. Realice la gráfica de malla,
c. desarrolle y obtenga el modelo discreto para u(xi,tj)

Suponga que b = 2, Aproxime la solución con Δx = 0.2, Δt = Δx/100.

d. Realice al menos tres iteraciones en el eje tiempo.
e. Estime el error de u(xi,tj), y presente observaciones sobre la convergencia del método.

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (5 puntos), literal d (15 puntos), literal e (5 puntos).

Referencia: Chapra & R. Canale (2010). Métodos Numéricos para Ingenieros. Ejercicio 30.15 p904,
Solving the heat equation | DE3. 3Blue1Brown 16 Junio 2019.

 

2Eva_2022PAOI_T3 EDP parabólica barra enfriada en centro

2da Evaluación 2022-2023 PAO I. 30/Agosto/2022

Tema 3. (40 puntos) Use el método de diferencias progresivas para aproximar la solución de la siguiente ecuación diferencial parcial parabólica:

\frac{\partial U}{\partial t} - \frac{1}{9} \frac{\partial ^2 U}{\partial x^2} = 0 0 \leq x \leq 2, t>0

Con las condiciones iniciales de borde e iniciales:

U(0,t) = U(2,t) = 0, t>0 U(x,0) = \cos \Big( \frac{\pi}{2}(x-3)\Big) , 0 \leq x \leq 2

Aplique un método numérico para encontrar los valores de U(x,t) usando Δx = 1/3, Δt = 0.02 y muestre:

a. La grafica de malla
b. Ecuaciones de diferencias divididas  a usar
c. Encuentre las ecuaciones considerando las condiciones dadas en el problema.
d. Determine el valor de λ, agrupando las constantes durante el desarrollo, revise la convergencia del método.
e. Resuelva para tres pasos
f. Estime el error (solo plantear)
g. Usando el algoritmo, aproxime la solución para t=0.02 y t=0.1

Rúbrica: literal a (3 puntos), literal b (2 puntos), literal c (5 puntos), literal d (5 puntos), aplicación de condiciones iniciales (5 puntos), literal e (10 puntos), literal f (5 puntos). literal g, usando algoritmo (5 puntos)

Referencia: 2Eva_IT2017_T3 EDP parabólica http://blog.espol.edu.ec/analisisnumerico/2eva_it2017_t3-edp-parabolica/


2Eva2022PAOI Tema2 Ux 0

2Eva_2021PAOII_T3 EDP Línea de transmisión sin pérdidas

2da Evaluación 2021-2022 PAO II. 25/Enero/2022

Tema 3. (40 puntos) En una línea de transmisión eléctrica de longitud 200 m en forma de cable coaxial, que conduce una corriente alterna de alta frecuencia, para el ejercicio se considera la línea “sin pérdida” o sin resistencia equivalente.

transmision Sin Perdidas 01
El voltaje V en el cable se describe por medio de:

\frac{\partial ^2 V}{\partial x^2} =LC \frac{\partial ^2 V}{\partial t^2}
0 < x < 200
t>0

Donde:
L = 0.1 Faradios/m, es la inductancia por longitud unitaria y
C = 0.3 Henrios/m es la capacitancia por longitud unitaria

Suponga que el voltaje y la corriente también satisfacen:

V(0,t) = V(200,t) = 0
V(x,0) = 110 \sin \frac{\pi x}{200}
\frac{\partial V}{\partial t}(x,0) = 0

Aplique un método numérico para encontrar voltaje o corriente usando Δx = 10, Δt = 0.1 y muestre:

a. la gráfica de malla
b. ecuaciones de diferencias divididas a usar
c. encuentre las ecuaciones considerando las condiciones dadas en el problema.
d. determine el valor de λ, agrupando las constantes durante el desarrollo, revise la convergencia del método.
e. Resuelva para tres pasos
f. Estime el error (solo plantear)
g. Aproxime la solución para t=0.2 y t=0.5

Rúbrica: literal a (3 puntos), literal b (2 puntos), literal c (5 puntos), literal d (5 puntos), aplicación de condiciones iniciales (5 puntos), literal e (10 puntos), literal f (5 puntos). literal g, usando algoritmo (5 puntos)

Referencia: Burden 9Ed Ejercicios 12.3.8 p745

2Eva_2021PAOI_T3 EDP Elíptica con valores en la frontera f(x) g(y)

2da Evaluación 2021-2022 PAO I. 31/Agosto/2021

Tema 3 (40 puntos) Considere la siguiente ecuación diferencial parcial con valores en la frontera (PVF):

\frac{\partial ^2 u}{\partial x^2} +\frac{\partial^2 u}{\partial y^2} = 0 0 \lt x \lt \frac{1}{2}, 0 \lt y\lt \frac{1}{2} u(x,0)=0, 0 \leq x \leq \frac{1}{2} u(0,y)=0 , 0\leq y \leq \frac{1}{2} u\Big(x,\frac{1}{2} \Big) = 200 x , 0 \leq x \leq \frac{1}{2} u\Big(\frac{1}{2} ,y \Big) = 200 y , 0 \leq y \leq \frac{1}{2}

Use el método de diferencias finitas para aproximar la solución del PVF anterior tomando como tamaño de paso

h=k=\frac{1}{6}

Recuerde: presentar la malla, etiquetando cada eje con valores referenciales de los puntos seleccionados, presentar el planteamiento completo del ejercicio, usar expresiones completas en el desarrollo de cada uno de los pasos.

Rúbrica: Aproximación de las derivadas parciales (5 puntos), construcción de la malla (10), construcción del sistema lineal (20), resolución del sistema (5 puntos).