1Eva_IT2019_T2 Catenaria cable

1ra Evaluación I Término 2019-2020. 2/Julio/2019. MATG1013

Tema 2. (30 puntos) Un cable en forma catenaria es aquel que cuelga entre dos puntos que no se encuentran sobre la misma línea vertical. Como se muestra en la figura 1, no está sujeta a más carga que su propio peso. Así, su peso en N/m actúa como una carga uniforme por unidad de longitud a lo largo del cable.

Cable Catenaria 01

En la figura 2, se ilustra un diagrama de cuerpo libre de una sección AB, donde TA y TB son las fuerzas de tensión en el extremo.

Con base en los balances de fuerzas horizontal y vertical, se obtiene para el cable el siguiente modelo:

y = \frac{T_A}{w} cosh \Big( \frac{w}{T_A}x \Big) + y_0 - \frac{T_A}{w}

Donde la altura y del cable está en función de la distancia x.

Además se tiene que:

cosh(z) = \frac{e^z+ e^{-z}}{2}

Utilice el método de Newton-Raphson para hallar el valor del parámetro TA dado los valores de los parámetros w=12, y0=6 de modelo que el cable tenga una altura de 15 metros para x=50

Rúbrica: Planteamiento del problema (10 puntos), obtener la derivada (5 puntos), plantear el método (5 puntos), iteraciones (5 puntos), verificar tolerancia (5 puntos)


Nota: Todos los temas deben mostrar evidencia del desarrollo del método numérico planteado.

Referencia: Chapra 5Ed Problema 8.17 p219 pdf243. Sears&Zemanski Vol1 12Ed problema 5.63. Cuerda con masa p173. https://es.wikipedia.org/wiki/Catenaria

1Eva_IIT2018_T4 Tasa de interés en hipoteca

1ra Evaluación II Término 2018-2019. 10/Noviembre/2018. MATG1013

Tema 4. Para pagar una hipoteca de una casa durante n periodos de tiempo se usa la fórmula:

P = A\Big(\frac{1-(1+i)^{-n}}{i} \Big)

En ésta ecuación, P es el valor presente de la casa, A es el valor del pago periódico de la deuda durante n periodos y la tasa de interés por periodo es i.

casa juguete imagen

Suponga que la casa tiene un valor presente de 70000 dólares y deberá ser pagada mediante 1200 dólares mensuales por 25 años (300 meses).

a) Plantee la ecuación

b) Encuentre un intervalo para i donde haya un cambio de signo en la función

c) Aplique el método de Newton

1Eva_IIT2018_T2 Distancia mínima a un punto

1ra Evaluación II Término 2018-2019. 10/Noviembre/2018. MATG1013

Tema 2. Aproxime con un grado de exactitud de 0.0001 el valor de x que en la gráfica de y=ex está más cerca al punto P(1,1).

a) Plantear la ecuación

b) Hallar un intervalo de existencia y de convergencia


distancia mínima de trayectoria a un punto

Referencias: 

Gigante asteroide con su propia Luna pasará en cercanías de la Tierra . https://www.eluniverso.com/noticias/2019/05/23/nota/7344362/gigante-asteroide-su-propia-luna-pasara-cercanias-tierra

 Un asteroide dos veces más grande que un avión Boeing 747 pasará muy cerca la Tierra. https://www.eluniverso.com/noticias/2018/08/28/nota/6927335/asteroide-dos-veces-mas-grande-que-avion-pasara-muy-cerca-tierra

 

Cometa Trayectoria 01

Referencia: https://spaceplace.nasa.gov/comet-quest/sp/

3Eva_IT2018_T1 Intersección de dos círculos

3ra Evaluación I Término 2018-2019. 11/Septiembre/2018. MATG1013

Tema 1. (30 puntos) Encuentre las raíces de las ecuaciones simultaneas siguientes:

(x-4)^2 + (y-4)^2 = 5 x^2 + y^2 = 16

a) Use el enfoque gráfico para obtener los valores iniciales.

b) Encuentre aproximaciones refinadas con el Método de Newton-Raphson

Rúbrica: literal a (10 puntos), literal b  (20 puntos)

intersecta Circulos 01


Referencia: Un asteroide dos veces más grande que un avión Boeing 747 pasará muy cerca la Tierra. https://www.eluniverso.com/noticias/2018/08/28/nota/6927335/asteroide-dos-veces-mas-grande-que-avion-pasara-muy-cerca-tierra

Intersecta Circulos 02
Europa Press 28 de agosto, 2018 - 11h51

1Eva_IT2018_T2 Teorema Punto Fijo

1ra Evaluación I Término 2018-2019. 26/junio/2018. MATG1013

Tema 2. (25 puntos) Sea g:[a,b] → R una función continua tal que g(x) ∈ [a,b] para toda x ∈ [a,b] .
Suponga además que g es una función contractiva en [a,b] esto es
\forall x,y \in [a,b]: |g(x)-g(y)| \lt |x-y|

Demuestre o refute las siguientes afirmaciones:

a) g tiene al menos un punto fijo en [a,b]

b) g tiene un punto fijo único en [a,b]

Rúbrica:
Literal a. Construye la función f(x)=x-g(x)=0 , verifica el cambio de signo de f(x) en los extremos del intervalo y concluye que p =g(p) (hasta 15 puntos),
literal b. Supone dos puntos fijos, calcula | p-q |, utiliza la propiedad contractiva y concluye que se produce una contradicción (hasta 10 puntos)

3Eva_IIT2017_T1 Punto fijo

3ra Evaluación II Término 2017-2018. Febrero 20, 2018. MATG1013

Tema 1. Sea g: [a,b] →ℜe (reales) una función diferenciable tal que g(x) ∈ [a,b], para toda x ∈ [a,b]. Demuestre o refute las siguientes afirmaciones.

a) g tiene al menos un punto fijo en [a,b]

b) g tiene un punto fijo único en [a,b]

3Eva_IT2012_T1 Sistema Ecuaciones no lineales

3ra Evaluación I Término 2012-2013. 11/Septiembre/2012. ICM00158

Tema 1. Dado el sistema de ecuaciones no lineales

3x^2 + 3y^2 - 15 = 0 2x^2y- 1 = 0

x∈R;   ≥ 1

a. Realice un bosquejo gráfico y especifique el número de soluciones del sistema.

b. Determine la ecuación en términos de una variable para resolver el sistema.

c. Justifique un intervalo donde se encuentre la solución de la ecuación planteada en literal b.

d. Aproxime la solución empleando el método de Newton-Raphson con tolerancia de 10-6.

e. Escriba correctamente la solución hallada.

3Eva_IIT2011_T1_MN Precios mensuales

3ra Evaluación II Término 2011-2012. 14/Febrero/2012. ICM02188 Métodos Numéricos

Tema 1. (30 puntos) Suponga que el precio de un producto f(x) depende del tiempo x en el que se lo ofrece al mercado con la siguiente relacion:

f(x) = 25x e^{-0.1x} 0\leq x \leq 12

en donde x es tiempo en meses.

Se desea determinar el dia en el que el precio sube a 80.

a. Evalúe f con x en meses hasta que localice una raíz real (cambio de signo) y trace la forma aproximada de f(x)

b. Use el Método de Newton-Raphson para calcular la respuesta (mes) con precisión 10-4. Exprese esta respuesta en días (1mes = 30 días)

c. Encuentre el día en el cual el precio será máximo. Use el método de Newton con precisión 10-4

3Eva_IT2010_T1 Envase cilíndrico

3ra Evaluación I Término 2010-2011. 14/Septiembre/2010. ICM00158

Tema 1. Un envase de lata con forma de cilindro circular recto, será construido para contener 1000 cm3. envase Cilindro 01

Las partes superior e inferior circulares del envase deben tener un radio de 0.25 mayor que el radio de éste, de manera que el excedente pueda usarse para formar un sello con el cuerpo principal.

La hoja de material con la que se forme dicho cuerpo, debe ser también de 0.25 cm más larga que la circunferencia del envase, de manera que se pueda formar un sello.

Encuentre con un error de 10-4 la cantidad mínima de material para construir dicha lata.


Referencias: Burden Cap2.6 Ejercicio 11 9Ed p101lata abierta 01

 

3Eva_IIT2008_T4 Raices por Newton

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM00158

Tema 4. Con los conocimientos de cálculo diferencial y geometría analítica, deduzca el método de Newton para determinar las raíces de una función .

Luego use el teorema de convergencia del punto fijo a éste método y explique el objetivo de su aplicación.