1Eva_IIT2013_T4 Sorteo series mundial de fútbol

1ra Evaluación II Término 2013-2014. Diciembre 3, 2013 /ICM00794

Tema 4. (30 puntos) Una vez conocidas las 32 selecciones que participarán del próximo mundial de fútbol se necesita realizar el sorteo entre las 8 series o grupos de competencia.

Las selecciones se encuentran numeradas del 1 al 32, las mejores han sido pre asignadas como “cabeza de serie”; una por cada grupo y no se sorteará su ubicación en la serie.

Las selecciones restantes se sortearán la ubicación en cada serie (grupo) para completar los cuatro participantes por serie.

grupo 1 2 3 4 5 6 7 8
cabeza [grupo] 3 7 9 12 22 25 26 30

El sorteo de serie (luego de copiar los cabezas de grupo) ser realizará en un vector como el mostrado:

selección 1 2 3 4 5 6 7 8 9 32
serie [selección] 0 0 1 0 0 0 2 0 3 0

Elabore un algoritmo que solicite cuáles son los 8 equipos que serán cabezas de serie, asigne aleatoriamente (y sin repeticiones) los 24 equipos restantes, al final muestre el listado de las series resultantes.

Rúbrica: Ingreso (5 puntos), definir pre-asignados (5 puntos), sorteos no repetidos (15 puntos), presentación de resultados (5 puntos).

1Eva_IT2013_T3 Generar tarjetas pre pago

1ra Evaluación I Término 2013-2014, Julio 2, 2013 /ICM00794

Tema 3. (20 puntos) Una tarjeta prepago que se activa y valida por llamada telefónica o internet utiliza dos números: tarjeta prepago dibujo

  • la serie y
  • una clave

ambos números hacen única a la tarjeta y se usan como método de registro y seguridad.

La serie  se compone de 8 dígitos que corresponden a la identificación de la tarjeta dentro de un rango de producción, la clave es un número de 6 dígitos generados de forma aleatoria [100000, 999999];

Elabore un algoritmo que permita
a) generar n tarjetas prepago dentro de un rango de serie con su correspondiente clave de validación.
b) Muestre cuántas tarjetas tienen claves impares y cuántas pares.
c) Muestre la tabla de las series y sus claves

Ejemplo:
¿Cuántas tarjetas?: 1000
¿Serie Inicial?:  2531 1001
Tarjeta Serie Clave
1 2531 1001 725 673
2 2531 1002 428 095
1000 2531 2000 152 652

Rúbrica: Ingreso (5 puntos), literal b (10 puntos), literal c (5 puntos).

 

1Eva_IIT2013_T3 Juego Semillero

1ra Evaluación II Término 2013-2014. Diciembre 3, 2013 /ICM00794

Tema 3. (30 puntos) Semillero es un juego con n jugadores que buscan obtener al final más fichas de las que aportan para jugar. semillero juego fichas

Todos los jugadores participan con m fichas, depositándolas en un recipiente común en el juego.enteros aleatorios dados

En cada turno, el jugador lanzará dos dados y obtendrá fichas del recipiente común equivalente a la suma de las caras superiores de los dados.

El juego termina cuando no quedan más fichas en el recipiente, mostrando: el jugador con más fichas, el jugador que vació el recipiente y las fichas obtenidas por jugador.

Realice un algoritmo que simule el juego descrito, considerando lo siguiente:

  • El número de fichas por participante m es igual para todos los participantes, mínimo 20 (validar)
  • Los turnos son rotativos: jugador 1, jugador 2, …, jugador n, jugador 1,  jugador 2, …, jugador n, …
  • El juego finaliza en cualquier turno, cuando se acaban las fichas.
  • Al final se extraen solo las fichas restantes en el recipiente, pues el total de fichas restantes solo puede llegar a 0.
  • Para encontrar al ganador, debe describir el algoritmo, NO use funciones de matlab.

Rúbrica: Ingreso y validación (5 puntos), control de turnos (5 puntos). Control de fichas (10 puntos). Busca ganador (5 puntos), resultados (5 puntos).

1Eva_IIT2013_T2 Números palíndromo con Python

1ra Evaluación II Término 2013-2014. Diciembre 3, 2013 /ICM00794

Tema 2. (25 puntos)

Un número palíndromo es un número que se lee igual de izquierda a derecha que de derecha a izquierda.

Realice un algoritmo que permita:

Ejemplo:
 Números palíndromo: 2002, 1991, 2112.
 No son números palíndromo: 2013, 1492

a) Invertir los dígitos de un número y verificar si el número es palíndromo

b) Buscar los números palíndromo con más de dos cifras y que sean menores a 1 millón.

Rúbrica: literal a (10 puntos), literal b, manejo de rangos (5 puntos) y respuesta (5 puntos). Algoritmo integrado (5 puntos)

1Eva_IT2013_T2 Código de barras- simbología discreta

1ra Evaluación I Término 2013-2014, Julio 2, 2013 /ICM00794

Tema 2. (25 puntos) El código de barras utiliza líneas paralelas verticales (barras y espacios) que representan información en su equivalente binario.

El código es muy usado en los puntos de ventas y es “leído” por un dispositivo láser (scanner).

Para facilitar la lectura por scanner se usa el método de “simbología discreta”, en el que se marca el inicio, separación y fin de los datos con  la secuencia barra/espacio/ barra (101) por cada grupo de 10 bits (dígitos binarios).

Elabore un algoritmo que permita cambiar un código de producto conformado por dos números de 3 cifras a su equivalente en código de barras usando simbología discreta.

>> codigobarras
1er Número: 725
2do Número: 673
101 1011010101 101 1010100001 101

Nota Matlab: Mostrar todos los dígitos fprintf(‘% .0d ‘, número).
Referencia: http://es.wikipedia.org/wiki/C%C3%B3digo_de_barras
Rúbrica: Cambio decimal a binario (10 puntos), simbología discreta (10 puntos), resultado (5 puntos).

1Eva_IT2013_T1 Primos gemelos

1ra Evaluación I Término 2013-2014, Julio 2, 2013 /ICM00794

Tema 1. (25 puntos)
En mayo de 2013 un matemático presentó formalmente una demostración a la Conjetura de los Primos Gemelos.

Se denominan “números primos gemelos” aquellos números primos consecutivos separados por dos unidades.

Ejemplo: Primos gemelos entre 2 y 50
3 y 5,  5 y 7, 11 y 13, 17 y 19, 29 y 31, 41 y 43, ...
Parejas: 6

Escriba un algoritmo para determinar:
¿Cuántas parejas de primos gemelos existen entre 2 y n?

Rúbrica: Primos [2, n] (10 puntos), determinar primos gemelos (10 puntos), contar parejas (5 puntos)

Referencia: www.unocero.com/2013/05/17/primera-prueba-de-que-muchos-numeros-primos-gemelos-vienen-en-pares/

Las Matemáticas tienen una Terrible Falla. Veritasium en español. 6 junio 2021. tiempo [0 a 1.06].

1Eva_IIT2013_T1 Verificar Bisiesto

1ra Evaluación II Término 2013-2014. Diciembre 3, 2013 /ICM00794

Tema 1 (15 puntos) En el calendario gregoriano, aplicable  desde el año 704, un año es bisiesto si es divisible entre 4, a menos que sea divisible para 100. Pero un año también es bisiesto si es divisible para 100 y además es divisible para 400.

Por ejemplo: los años 1700, 1800, 1900 y 2100 no son bisiesto,
pero son bisiestos: 1600, 2000 y 2400.

Realice un algoritmo para determinar si un año dado, es o no bisiesto.
Rúbrica: ingreso y validación (5 puntos), verificar bisiesto (8 puntos), bloque de salida (2 puntos)

1Eva_IT2012_T4 Ajustar tarifas eléctricas invierno/verano

1ra Evaluación I Término 2012-2013. Julio 03, 2012 /ICM00794

Tema 4 (30 puntos). Una vez terminado el invierno, el subsidio de la tarifa eléctrica residencial cambia para los clientes residenciales en la costa. medidor eletrico

La tarifa se establece acorde a los consumos en pliego tarifario mostrado.

Tarifa Eléctrica
Consumo entre (KWh) Invierno ($) Verano ($) Cambio ($)
< 130 0.04 0.04 0.00
130 a 500 0.08 0.11 0.03
500 a 700 0.11 0.13 0.02
superior a 700 0.16 0.26 0.10

Realice un algoritmo que permita para un mes cualquiera:

a) Ingresar el consumo de n clientes residenciales,

b) Calcular el valor facturado y el incremento para cada cliente en verano,

c) Mostrar el total facturado en el mes y

d) ¿Cuál es el cliente que más valor se le ha facturado? (suponga que existe solo uno).

Consumo por cliente residencial
Cliente consumo verano (KWh) Facturado verano ($) Incremento ($)
1 200 22.00 6.00
2 600 78.00 12.00
3 400 44.00 12.00
4 800 208.00 80.00
Total facturado: $ 352.00
 Cliente más valor facturado: 4

Sugerencia: Usar arreglos solo para tablas de cliente

Referencia: “Terminado el invierno ajustan tarifas eléctricas”. www.eluniverso.com 09.06.2012. Pliego tarifario resumido.

Rúbrica: literal b y d (10 puntos), literal a y c (5 puntos).

1Eva_IIT2012_T4 Informe de pasantías

1ra Evaluación II Término 2012-2013. Noviembre 27, 2012 /ICM00794

TEMA 4 (30 puntos) Para las pasantías profesionales, los “estudiantes” de la ESPOL (universidad) se inscriben indicando en cual “empresa” de las disponibles quisieran hacer las prácticas.

Para el registro, los estudiantes se encuentran codificados de 1 a n y las empresas están codificadas de 1 a m.

Se requiere un reporte de los registros que muestre:

a) La empresa que tiene registrados más estudiantes (pasantes), suponga que es una sola,

b) ¿Cuántas empresas aún no registran pasantes?, si todas tienen pasantes, muestre 0, y

c) La cantidad promedio de pasantes por empresa (considerando solo las empresas en las que hay registrados pasantes)

Elabore un algoritmo que permita ingresar los datos para el registro acorde a los valores de n y m, realice los cálculos necesarios y muestre el reporte requerido.

inscripción n
estudiante 1 2 3 4 5
 empresa 4 1 4 2 4
control de inscritos m
 empresa  1 2 3 4
 cantidad  1 1 0 3
Empresa:
 más pasantes (fila) : 4
 sin pasantes: 1
 Promedio de pasantes/empresa: 5/3

Rúbrica: Ingreso (5 puntos), cantidad de estudiantes/empresa (5 puntos), literal a (10 puntos), literal b (5 puntos), literal c (5 puntos).

1Eva_IT2012_T3 Determinar inventario máximo y mínimo

1ra Evaluación I Término 2012-2013. Julio 03, 2012 /ICM00794

Tema 3 (20 puntos)inventario control
En el control de INVENTARIO DE PRODUCTOS que se lleva en una bodega, se tiene un modelo donde se determina la cantidad máxima y mínima de stock por producto.

Considerando el siguiente modelo:

E_{min}=C_{min}*Tr E_{max} = (C_{max}*Tr) + E_{min} CP = E_{max} - E

donde:

Tr = Tiempo de reposición de inventario (en días)
Cmax = Consumo máximo (unidades diarias)
Cmin = Consumo mínimo (unidades diarias)
Emax = Existencia máxima
Emin = Existencia mínima (o de seguridad)
CP = Cantidad de pedido
E = Existencia actual

Escriba un ALGORITMO que permita:

a) Registrar los datos de Consumo Máximo (Cmax), Consumo Mínimo (Cmin), Existencia actual (E) y Tiempo de reposición (Tr) de inventario para un listado de Nproductos.

b) Luego aplicando el modelo mostrado, determine la Cantidad de Pedido (CP) para cada producto.

c) Muestre aquellos productos donde la cantidad de pedido (CP) supere en un 70% la existencia actual.

Rúbrica: Ingreso de datos en arreglos (5 puntos), calculo de pedidos (8 puntos), Salida (7 puntos)