s2Eva_IIT2017_T2 Covarianza X, Y

2da Evaluación II Término 2017-2018. Febrero 7, 2018

Tema 2.

θ es una variable aleatoria uniforme, distribuida en el rango [-π π].

fθ(θ)=1π(π))=12π f_{\theta} (\theta) = \frac{1}{\pi - (-\pi))} = \frac{1}{2\pi}

valor esperados X(t)

X(t)=cos(ωt+θ) X(t) = \cos (\omega t + \theta) E[X(t)]=E[cos(ωt+θ)] E[X(t)] = E[ \cos (\omega t + \theta)] =ππx(t)fθ(θ)dθ = \int_{-\pi}^{\pi}x(t)f_{\theta}(\theta) d\theta =ππcos(ωt+θ)12πdθ = \int_{-\pi}^{\pi}\cos (\omega t + \theta) \frac{1}{2\pi} d\theta =12πsin(ωt+θ)ππ = \frac{1}{2\pi}\sin (\omega t + \theta) \Big|_{-\pi}^{\pi} =12π[sin(ωt+π)sin(ωtπ)] = \frac{1}{2\pi} [ \sin (\omega t +\pi) -\sin (\omega t -\pi) ] E[X(t)]=0 E[X(t)] = 0

valor esperado Y(t)

Y(t)=sin(ωt+θ) Y(t) = \sin (\omega t + \theta) E[Y(t)]=E[sin(ωt+θ)] E[Y(t)] = E[ \sin(\omega t + \theta)] =ππy(t)fθ(θ)dθ = \int_{-\pi}^{\pi}y(t)f_{\theta}(\theta) d\theta =ππsin(ωt+θ)12πdθ = \int_{-\pi}^{\pi}\sin(\omega t + \theta) \frac{1}{2\pi} d\theta =12π[cos(ωt+θ)]ππ = \frac{1}{2\pi} [-\cos(\omega t + \theta)] \Big|_{-\pi}^{\pi} =12π[cos(ωt+π)(cos(ωtπ))] = \frac{1}{2\pi} [ -\cos(\omega t +\pi) - (-\cos (\omega t -\pi)) ] =12π[cos(ωtπ)cos(ωt+π)] = \frac{1}{2\pi} [\cos(\omega t -\pi) - \cos (\omega t +\pi) ] E[Y(t)]=0 E[Y(t)] = 0

Correlación X(t) y Y(t)

RXY[t,t+τ]=E[X(t)Y(t+τ)] R_{XY}[t,t+\tau] =E[X(t) Y(t+\tau)] =E[cos(ωt+θ)sin(ω(t+τ)+θ)] =E[\cos (\omega t + \theta) \sin (\omega (t+\tau) + \theta)] =E[12[sin[(ω(t+τ)+θ)(ωt+θ)]+sin[(ω(t+τ)+θ)+(ωt+θ)]]] =E \Big[ \frac{1}{2}\Big[\sin [(\omega (t+\tau) + \theta) - (\omega t + \theta)] + \sin [(\omega (t+\tau) + \theta) + (\omega t + \theta)] \Big] \Big] =12E[sin(ωτ)+sin(2ωt+ωτ+2θ)] =\frac{1}{2}E\Big[\sin (\omega \tau) + \sin (2\omega t+ \omega \tau + 2\theta) \Big] =12E[sin(ωτ)]+12E[sin(2ωt+ωτ+2θ)] =\frac{1}{2}E \Big[ \sin (\omega \tau) \Big] + \frac{1}{2}E\Big[\sin (2\omega t+ \omega \tau + 2\theta) \Big]

El primer término no contiene la variable aleatorioa Θ, por lo que se comporta como una constante para el valor esperado.

=sin(ωτ)2+12ππsin(2ωt+ωτ+2θ)12πdθ =\frac{\sin (\omega \tau)}{2} + \frac{1}{2}\int_{-\pi}^{\pi}\sin (2\omega t+ \omega \tau + 2\theta) \frac{1}{2\pi} d\theta =sin(ωτ)214πcos(2ωt+ωτ+2θ)ππ =\frac{\sin (\omega \tau)}{2} - \frac{1}{4\pi}\cos (2\omega t+ \omega \tau + 2\theta) \Big|_{-\pi}^{\pi} =sin(ωτ)214π[cos(2ωt+ωτ+2π)cos(2ωt+ωτ2π)] =\frac{\sin (\omega \tau)}{2} - \frac{1}{4\pi}\Big[ \cos (2\omega t+ \omega \tau + 2\pi) - \cos (2\omega t+ \omega \tau - 2\pi)\Big] =sin(ωτ)20 =\frac{\sin (\omega \tau)}{2} - 0 RXY[t,t+τ]=sin(ωτ)2 R_{XY}[t,t+\tau] =\frac{\sin (\omega \tau)}{2}
CXY[t,t+τ]=RXY[t,t+τ]E[X(t)]E[Y(t+τ)] C_{XY}[t,t+\tau] = R_{XY}[t,t+\tau] - E[X(t)]E[Y(t+\tau)] CXY[t,t+τ]=RXY[t,t+τ]0 C_{XY}[t,t+\tau] = R_{XY}[t,t+\tau] - 0 CXY[t,t+τ]=sin(ωτ)2 C_{XY}[t,t+\tau] = \frac{\sin (\omega \tau)}{2}

X(t) y Y(t) son procesos con correlación, pues su covarianza cruzada no es igual a cero para todas las selecciones de muestras de tiempo. Sin embargo, X(t1) y Y(t2) son variables aleatorias no correlacionadas para t1 y t2 dado que ω( t2  – t1 ) = k π, donde k es cualquier número entero.


Los valores de mas medias de X(t) = Y(t) =0 son constantes

RX[t,t+τ]=E[X(t)X(t+τ)] R_{X}[t,t+\tau] = E[X(t) X(t+\tau)] =E[cos(ωt+θ)cos(ω(t+τ)+θ)] =E[\cos (\omega t + \theta) \cos(\omega (t+\tau) + \theta)] =E[12[cos[(ωt+θ)(ω(t+τ)+θ)]+cos[(ωt+θ)+(ω(t+τ)+θ)]]] =E\Big[\frac{1}{2} \Big[ \cos [(\omega t + \theta) -(\omega (t+\tau) + \theta) ] + \cos[(\omega t + \theta)+(\omega (t+\tau) + \theta)] \Big] \Big] =12E[cos(ωτ)+cos(2ωt+ωτ+2θ)]] =\frac{1}{2}E\Big[ \cos (\omega \tau ) + \cos(2\omega t + \omega \tau + 2\theta)] \Big] =12E[cos(ωτ)]+12E[cos(2ωt+ωτ+2θ)]] =\frac{1}{2}E\Big[ \cos (\omega \tau )\Big] +\frac{1}{2}E\Big[ \cos(2\omega t + \omega \tau + 2\theta)] \Big] =cos(ωτ)2cos(ωτ)+0 =\frac{\cos (\omega \tau )}{2} \cos (\omega \tau ) +0

La autocorrelación depende solo de las diferencias de tiempo τ = t2-t1

El proceso X(t) clasifica como Estacionario en el sentido amplio.

Tarea: Revisar la autocorrelación para Y(t) para verificar si clasifica como WSS.