Que son los Metales?
julio 29th, 2011
Son un grupo de elementos químicos que presentan todas o gran parte de las siguientes propiedades físicas: estado sólido a temperatura normal, excepto el mercurio que es líquido; opacidad, excepto en capas muy finas; buenos conductores eléctricos y térmicos; brillantes, una vez pulidos, y estructura cristalina en estado sólido. Metales y no metales se encuentran separados en el sistema periódico por una línea diagonal de elementos. Los elementos a la izquierda de esta diagonal son los metales, y los elementos a la derecha son los no metales. Los elementos que integran esta diagonal —boro, silicio, germanio, arsénico, antimonio, teluro, polonio y astato— tienen propiedades tanto metálicas como no metálicas. Los elementos metálicos más comunes son los siguientes: aluminio, bario, berilio, bismuto, cadmio, calcio, cerio, cromo, cobalto, cobre, oro, iridio, hierro, plomo, litio, magnesio, manganeso, mercurio, molibdeno, níquel, osmio, paladio, platino, potasio, radio, rodio, plata, sodio, tantalio, talio, torio, estaño, titanio, volframio, uranio, vanadio y cinc. Los elementos metálicos se pueden combinar unos con otros y también con otros elementos formando compuestos, disoluciones y mezclas. Una mezcla de dos o más metales o de un metal y ciertos no metales como el carbono se denomina aleación. Las aleaciones de mercurio con otros elementos metálicos son conocidas como amalgamas.
PROPIEDADES FÍSICAS
Los metales muestran un amplio margen en sus propiedades físicas. La mayoría de ellos son de color grisáceo, pero algunos presentan colores distintos; el bismuto es rosáceo, el cobre rojizo y el oro amarillo. En otros metales aparece más de un color, y este fenómeno se denomina pleocroísmo. El punto de fusión de los metales varía entre los -39 °C del mercurio y los 3.410 °C del volframio. El iridio, con una densidad relativa de 22,4, es el más denso de los metales. Por el contrario, el litio es el menos denso, con una densidad relativa de 0,53. La mayoría de los metales cristalizan en el sistema cúbico, aunque algunos lo hacen en el hexagonal y en el tetragonal. La más baja conductividad eléctrica la tiene el bismuto, y la más alta a temperatura ordinaria la plata. (Para conductividad a baja temperatura véase Criogenia; Superconductividad.) La conductividad en los metales se puede reducir mediante aleaciones. Todos los metales se expanden con el calor y se contraen al enfriarse. Ciertas aleaciones, como las de platino e iridio, tienen un coeficiente de dilatación extremadamente bajo.
Los metales suelen ser duros y resistentes. Aunque existen ciertas variaciones de uno a otro, en general los metales tienen las siguientes propiedades: dureza o resistencia a ser rayados; resistencia longitudinal o resistencia a la rotura; elasticidad o capacidad de volver a su forma original después de sufrir deformación; maleabilidad o posibilidad de cambiar de forma por la acción del martillo; resistencia a la fatiga o capacidad de soportar una fuerza o presión continuadas, y ductilidad o posibilidad de deformarse sin sufrir roturas.
PROPIEDADES QUÍMICAS
Es característico de los metales tener valencias positivas en la mayoría de sus compuestos. Esto significa que tienden a ceder electrones a los átomos con los que se enlazan. También tienden a formar óxidos básicos. Por el contrario, elementos no metálicos como el nitrógeno, azufre y cloro tienen valencias negativas en la mayoría de sus compuestos, y tienden a adquirir electrones y a formar óxidos ácidos.
Los metales tienen energía de ionización baja: reaccionan con facilidad perdiendo electrones para formar iones positivos o cationes. De este modo, los metales forman sales como cloruros, sulfuros y carbonatos, actuando como agentes reductores (donantes de electrones).
ESTRUCTURA ELÉCTRONICA
En sus primeros esfuerzos para explicar la estructura electrónica de los metales, los científicos esgrimieron las propiedades de su buena conductividad térmica y eléctrica para apoyar la teoría de que los metales se componen de átomos ionizados, cuyos electrones libres forman un “mar” homogéneo de carga negativa. La atracción electrostática entre los iones positivos del metal y los electrones libres, se consideró la responsable del enlace entre los átomos del metal. Así, se pensaba que el libre movimiento de los electrones era la causa de su alta conductividad eléctrica y térmica. La principal objeción a esta teoría es que en tal caso los metales debían tener un calor específico superior al que realmente tienen.
En 1928, el físico alemán Arnold Sommerfeld sugirió que los electrones en los metales se encuentran en una disposición cuántica en la que los niveles de baja energía disponibles para los electrones se hallan casi completamente ocupados (véase Átomo; Teoría cuántica). En el mismo año, el físico estadounidense de origen suizo Felix Bloch, y más tarde el físico francés Louis Brillouin, aplicaron esta idea en la hoy aceptada “teoría de bandas” para los enlaces en los sólidos metálicos.
De acuerdo con dicha teoría, todo átomo de metal tiene únicamente un número limitado de electrones de valencia con los que unirse a los átomos vecinos. Por ello se requiere un amplio reparto de electrones entre los átomos individuales. El reparto de electrones se consigue por la superposición de orbitales atómicos de energía equivalente con los átomos adyacentes. Esta superposición va recorriendo todo el metal, formando amplios orbitales que se extienden por todo el sólido, en vez de pertenecer a átomos concretos. Cada uno de estos orbitales tiene un nivel de energía distinto debido a que los orbitales atómicos de los que proceden, tenían a su vez diferentes niveles de energía. Los orbitales, cuyo número es el mismo que el de los orbitales atómicos, tienen dos electrones cada uno y se van llenando en orden de menor a mayor energía hasta agotar el número de electrones disponibles. En esta teoría se dice que los grupos de electrones residen en bandas, que constituyen conjuntos de orbitales. Cada banda tiene un margen de valores de energía, valores que deberían poseer los electrones para poder ser parte de esa banda. En algunos metales se dan interrupciones de energía entre las bandas, pues los electrones no poseen ciertas energías. La banda con mayor energía en un metal no está llena de electrones, dado que una característica de los metales es que no poseen suficientes electrones para llenarla. La elevada conductividad eléctrica y térmica de los metales se explica así por el paso de electrones a estas bandas con defecto de electrones, provocado por la absorción de energía térmica.
Categorías: General