Examen | 2018-2019 | Término 1 | Segunda Evaluación | Tema 5
Dada la transformación lineal T:\mathbb{R}^3\longrightarrow \mathbb{R}^3 definida porT\begin{pmatrix} \begin{array}{r} a\\b\\c \end{array} \end{pmatrix}=\begin{pmatrix} \begin{array}{r} a-2b-2c\\-2a+bm+8c\\2a+8b+cm \end{array} \end{pmatrix},determine los valores de la constante m para los cuales no es diagonalizable en \mathbb{R} la matriz [T]_{BB}, asociada a la transformación con respecto a las bases canónicas B en \mathbb{R}^3.
![Álgebra lineal [MATG1003]](https://blog.espol.edu.ec/matg1003/files/2018/09/cropped-nube-matg1003.png)