cl2-02. Subespacios Vectoriales


Definición. Sea H un subconjunto no vacío del espacio vectorial V (H\subseteq V), se dice que H es un espacio vectorial de V si H es un espacio vectorial con las mismas operaciones definidas en V.

Teorema. Sea V un espacio vectorial y sea H un subconjunto no vacío de V. Entonces, H es un subespacio de V si y solo si se cumplen las siguientes condiciones:
1. \forall\ h_{\mathrm{1}},h_{\mathrm{2}}\ \mathrm{\in}\ H:h_{\mathrm{1}}\mathrm{\oplus}h_{\mathrm{2}}\ \mathrm{\in}\space H
2. \forall\ h\ \mathrm{\in}\ H\ \mathrm{\wedge}\ \forall\ \alpha\ \mathrm{\in}\ \mathbb{R}:\alpha\odot h\ \mathrm{\in}\space H

Expresado de otra forma, un subconjunto de vectores constituye un subespacio vectorial, si éste a su vez constituye un espacio vectorial y al mismo tiempo es un subconjunto de un espacio vectorial mayor.

Para determinar si un subconjunto es o no un subespacio vectorial, es necesario que sea no vacío y mostrar que cumple con los axiomas de cerradura:

1. \forall\ h_{\mathrm{1}},h_{\mathrm{2}}\ \mathrm{\in}\ H:h_{\mathrm{1}}\mathrm{\oplus}h_{\mathrm{2}}\ \mathrm{\in}\ H
(Cerradura bajo la suma).
2. \forall\ h\ \mathrm{\in}\ H\ \mathrm{\wedge}\ \forall\ \alpha\ \mathrm{\in}\ \mathbb{R}:\alpha\odot h\ \mathrm{\in}\ H
(Cerradura bajo la multiplicación por un escalar).

Una manera de determinar que H es no vacío, es demostrando que el vector nulo está en H, razón por la cual algunos autores indican como axioma adicional que n_V{{\in}H}. Es conveniente notar que si los axiomas 1 y 2 se satisfacen y H es no vacío, entonces existe al menos un elemento u\!\in\!H; así se tiene que (-1)\odot u{{\in}H} por el axioma 2, y u+(-1)\odot u=n_V\!\in\!H; de donde, si se cumplen los axiomas 1 y 2 además de que H es no vacío, es decir, n_V \! \in \! H.

Ejemplo. Determine si el subconjunto H de todos los vectores en \mathbb{R^3} de la forma \left(x_{\mathrm{1}},x_{\mathrm{2}},x_{\mathrm{1}} + x_{\mathrm{2}}\right) constituye un subespacio vectorial en \mathbb{R^3}.

Solución. Para determinarlo, se debe probar que H es no vacío (nótese que el vector (0,0,0) pertence a H), y que el subconjunto cumple con los axiomas de cerradura de la suma entre vectores y multiplicación por un escalar.

\mathbf{1.\quad \forall h_{\mathrm{1}},h_{\mathrm{2}}\mathrm{\in}H:h_{\mathrm{1}}\mathrm{\oplus}h_{\mathrm{2}}\mathrm{\in}H}

Sean h_{\mathrm{1}}=\left(x_{\mathrm{1}},x_{\mathrm{2}},x_{\mathrm{1}} + x_{\mathrm{2}}\right) y h_{\mathrm{2}}=\left(y_{\mathrm{1}},y_{\mathrm{2}},y_{\mathrm{1}} + y_{\mathrm{2}}\right) entonces:
h_{\mathrm{1}}\mathrm{\oplus}h_{\mathrm{2}}=\left(x_{\mathrm{1}} + y_{\mathrm{1}},x_{\mathrm{2}} + y_{\mathrm{2}},x_{\mathrm{1}} + x_{\mathrm{2}} + y_{\mathrm{1}} + y_{\mathrm{2}}\right) Nótese que la tercera componente es la suma de las dos primeras. Por consiguiente el axioma si se cumple.

\mathbf{2.\quad \forall\ h\ \mathrm{\in}\ H\ \mathrm{\wedge}\ \forall\ \alpha\ \mathrm{\in}\ \mathbb{R}:\alpha\odot h\ \mathrm{\in}\ H}

Sea h=\left(x_{\mathrm{1}},x_{\mathrm{2}},x_{\mathrm{1}} + x_{\mathrm{2}}\right) entonces:
\alpha\odot h=\alpha\odot\left(x_{1},x_{2},x_{1}+x_{2}\right)=\left(\alpha x_{1},\alpha x_{2},\alpha\left(x_{1},x_{2}\right)\right)Por consiguiente el axioma si se cumple.

En conclusión, al cumplir con los 2 axiomas entonces el subconjunto H, con las operaciones convencionales de suma entre vectores (\oplus) y multiplicación por un escalar (\odot\alpha), representa un subespacio vectorial.

Cuando no se especifican las operaciones, por definición, se asumen las operaciones convencionales de suma entre vectores (\oplus) y multiplicación por un escalar (\odot\alpha).

Enlaces de interés

Clase Online
Plataforma SIDWeb
Referencias Bibliográficas

Tema 6

Examen | 2017-2018 | Término 1 | Primera Evaluación | Tema 6

Sea T una función definida sobre C^2{[a,b]} como:\begin{aligned}T&:\ C^2{[a,b]} \rightarrow C^2{[a,b]} \\ T(f)&=f''+2f'+f \end{aligned}Determine si T es una transformación lineal.

Tema 5

Examen | 2017-2018 | Término 1 | Primera Evaluación | Tema 5

Califique como verdadero o falso y justifique su respuesta.

a. Sea V un espacio vectorial. Sea S un conjunto linealmente independiente en V. Si w es un vector no nulo de V, entonces S\cup \{w\} es también un conjunto linealmente independiente en V.

b. Sea S=\{v_1,v_2,\cdots,v_k\} un conjunto generador del espacio vectorial. Si se añade un vector v_{k+1} que es combinación lineal de los vectores de S, entonces el conjunto S'=\{v_1,v_2,\cdots,v_k,v_{k+1}\} NO es un conjunto generador de V.

Tema 4

Examen | 2017-2018 | Término 1 | Primera Evaluación | Tema 4

Sea una base B=\left\{v_1,v_2,v_3,v_4\right\} del espacio vectorial V, se definen los siguientes subespacios vectoriales:\begin{aligned}H&=gen\left\{v_1-v_2+v_3,2v_2-v_3\right\}\\W&=gen\left\{v_1+v_2+v_4,v_4-v_1\right\}\end{aligned}Determine H\cap W, H+W y sus respectivas dimensiones.

Tema 3

Examen | 2017-2018 | Término 1 | Primera Evaluación | Tema 3

Para la matriz A. Obtenga el valor de k para que la dimensión de la imagen de A sea 3. ¿Y para que la dim(Im(A))=1? En ambos casos justifique su respuesta.\small{A=\left(\begin{array}{rrrr} 1&1&2&4 \\ 2&k&4&8 \\ 0&0&8&16 \end{array}\right)}

Tema 2

Examen | 2017-2018 | Término 1 | Primera Evaluación | Tema 2

Considere las bases ordenadas del espacio vectorial V=D_{2\times 2} que se indican a continuación:\small{B_1=\left\{ \left(\begin{array}{cc} 2 & 0\\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array}\right)\right\} \quad B_2=\left\{ \left(\begin{array}{rr} 4 & 0\\ 0 & -1 \end{array}\right),\left(\begin{array}{rr} -4 & 0 \\ 0 & -3 \end{array}\right)\right\}}a. Si \small{A=\left(\begin{array}{rr} 5 & 0\\ 0 & -2 \end{array}\right)}, determine \left[A\right]_{B_1}.
b. Determine la matriz (de transición) de cambio de base de B_1 a B_2.

Tema 1

Examen | 2017-2018 | Término 1 | Primera Evaluación | Tema 1

Un grupo de personas se reúnen para ir de excursión, juntándose un total de 20 entre hombres, mujeres y niños. Si se cuentan los hombres y mujeres, resulta ser el triple de niños. Además, si hubiese acudido una mujer más, su número iguala al de hombres. Hallar el número de hombres, mujeres y niños que han ido a la excursión.