Sea el espacio vectorial V=M_{2\times 2}. Sean los subespacios vectoriales\begin{aligned}H&=\left\{ \left(\begin{array}{rr}a & b \\c & d \end{array} \right) \in \mathbb{M}_{2\times 2}\; ;\; c=2a-b\; \land \; d=a-b \right\}\\W& =gen \left\{ \left(\begin{array}{rr}1 & -1 \\5 & 1 \end{array}\right), \left(\begin{array}{rr}2 & 2 \\2 & 1 \end{array} \right) \right\} \end{aligned}
a. Halle H\cap W y H+W.
b. ¿Pertenece el vector A=\left(\begin{array}{rr}9 & 8 \\7 & 5 \end{array}\right) al subespacio H+W? Justifique su respuesta.