s3Eva2016TI_T4 rampa(ω) – transformada inversa de Fourier

Ejercicio: 3Eva2016TI_T4 rampa(ω) – transformada inversa de Fourier

la función de magnitud |X(ω)|  es par en el eje vertical,

3E2016TI Tema4 Diagrama01

usando la derivada de |X(ω)|,

3E2016TI Tema4 Diagrama 03

la expresión de la gráfica usando impulsos y rectángulos en dominio ω es,

\frac{\delta}{\delta \omega}X(\omega) = \delta( \omega +\omega_0) - \frac{1}{\omega_0} P_{\omega_0/2}\Big( \omega +\frac{\omega_0}{2}\Big) + \frac{1}{\omega_0} P_{\omega_0/2}\Big( \omega -\frac{\omega_0}{2}\Big) - \delta( \omega - \omega_0)

aplicando la transformada inversa de Fourier

\mathscr{F} ^{-1} \Big[ \frac{\delta}{\delta \omega}X(\omega) \Big] = \mathscr{F} ^{-1} \Big[\delta( \omega +\omega_0) - \frac{1}{\omega_0} P_{\omega_0/2}\Big( \omega +\frac{\omega_0}{2}\Big) \Big] + \mathscr{F} ^{-1} \Big[\frac{1}{\omega_0} P_{\omega_0/2}\Big( \omega -\frac{\omega_0}{2}\Big) - \delta( \omega - \omega_0) \Big]

si se realiza por partes, y considerando solo la gráfica de magnitud |X(ω)|

\mathscr{F} ^{-1} \Big[ \frac{\delta}{\delta \omega}X(\omega) \Big] = -jtx_1(t) \mathscr{F} ^{-1} \Big[\delta( \omega +\omega_0)\Big] = \frac{1}{2\pi} e^{-j\omega_0 t} \mathscr{F} ^{-1} \Big[\frac{1}{\omega_0} P_{\omega_0/2}\Big( \omega +\frac{\omega_0}{2}\Big) \Big] = \frac{1}{\omega_0} \frac{1}{\pi t} \sin \Big(\frac{\omega_0}{2} t \Big) e^{-j\frac{\omega_0}{2}t}

sustituyendo en la ecuación principal,

-jtx_1(t) = \frac{1}{2\pi} e^{-j\omega_0 t} - \frac{1}{\omega_0} \frac{1}{\pi t} \sin \Big(\frac{\omega_0}{2} t \Big) e^{-j\frac{\omega_0}{2}t} + \frac{1}{\omega_0} \frac{1}{\pi t} \sin \Big(\frac{\omega_0}{2} t \Big) e^{j\frac{\omega_0}{2}t} - \frac{1}{2\pi} e^{j\omega_0 t}

agrupando,

-jtx_1(t) = \frac{1}{2\pi}\Big( e^{-j\omega_0 t} -e^{j\omega_0 t}\Big) + \frac{1}{\omega_0 \pi t} \sin \Big(\frac{\omega_0}{2} t \Big)\Big(- e^{-j\frac{\omega_0}{2} t} +e^{j\frac{\omega_0}{2} t}\Big)

para simplificar se divide ambos lados de la ecuación para -jt

x_1(t) = \frac{1}{\pi t}\Big( \frac{e^{j\omega_0 t}-e^{-j\omega_0 t} }{2j}\Big) - \frac{2}{\omega_0 \pi t^2 } \sin \Big(\frac{\omega_0}{2} t \Big)\Big(\frac{e^{j\frac{\omega_0}{2} t}- e^{-j\frac{\omega_0}{2} t}}{2j}\Big)

que es la forma exponencial del seno y coseno

x_1(t) = \frac{1}{\pi t} \sin (\omega_0 t) - \frac{2}{\omega_0 \pi t^2 } \sin \Big(\frac{\omega_0}{2} t \Big) \sin \Big( \frac{\omega_0}{2} t \Big) x_1(t) = \frac{1}{\pi t}\sin (\omega_0 t) - \frac{2}{\omega_0 \pi t^2 }\sin^2 \Big(\frac{\omega_0}{2} t \Big) x_1(t) = \frac{\omega_0}{\pi}\frac{\sin (\omega_0 t)}{\omega_0 t} - \frac{\omega_0}{2\pi}\Bigg[\frac{\sin \Big(\frac{\omega_0}{2} t \Big)}{\frac{\omega_0}{2} t} \Bigg]^2

ahora, considerando la gráfica de fase:
3E2016TI Tema4 Diagrama 02

se tiene que,

x(t) = x_1(t-3) x(t) = \frac{\omega_0}{\pi}\frac{\sin (\omega_0 (t-3))}{\omega_0 (t-3)} - \frac{\omega_0}{2\pi}\Bigg[\frac{\sin \Big(\frac{\omega_0}{2} (t-3) \Big)}{\frac{\omega_0}{2} (t-3)}\Bigg]^2

3Eva2016TI_T3 LTI CT Circuito RL respuesta de frecuencia

3ra Evaluación I Término 2016-2017. 15/septiembre/2016 TELG1001

Tema 3. (26 puntos) Para el circuito eléctrico que se muestra en la siguiente figura:

a. Determinar su función de transferencia

b. Determinar, esquematizar y etiquetar su respuesta de frecuencia, indicando a que tipo de filtro no ideal de frecuencias selectivas se podría asociar su comportamiento.

c. Obtener la respuesta impulso h(t) que representa al circuito eléctrico.

d. Determinar la respuesta v2(t) que se obtiene a la salida de dicho sistema cuando es exitado con una entrada v1(t) = sen 50t [V].
¿Qué puede decir acerca de si el sistema transmite con distorsión o sin distorsión? Justifique su respuesta de manera razonada.


Coordinador: Tama Alberto

s3Eva2016TI_T3 LTI CT Circuito RL respuesta de frecuencia

Ejercicio: 3Eva2016TI_T3 LTI CT Circuito RL respuesta de frecuencia

a. Determinar su función de transferencia

voltaje en la entrada,

v_1(t) = v_R(t) + v_L(t) v_1(t) = R i(t) + v_L(t)

voltaje en la salida,
v_2(t) = L \frac{\delta}{\delta t}i(t)

i(t) = \frac{1}{L} \int_{-\infty}^{t}v_2(\tau) \delta \tau

sustituyendo i(t)en la ecuacion de v1

v_1(t) = R \frac{1}{L} \int_{-\infty}^{t}v_2(\tau) \delta \tau + v_L(t)

usando un solo operador, el diferencial,

\frac{\delta}{\delta t} v_1(t) = \frac{R}{L} v_2(t) + \frac{\delta}{\delta t} v_2(t)

cambiando al dominio de frecuencia ω

j\omega V_1(\omega) = \frac{R}{L} V_2(\omega) + j\omega V_2(\omega) j\omega L V_1(\omega) = R V_2(\omega) + j\omega L V_2(\omega) j\omega L V_1(\omega) = V_2(\omega)\Big( R + j\omega L \Big) H(\omega) = \frac{V_2(\omega)}{V_1(\omega)} = \frac{j\omega L}{ R + j\omega L } H(\omega) = \frac{j\omega \frac{L}{R}}{ 1 + j\omega \frac{L}{R} }

usando los valores del circuito

H(\omega) = \frac{j\omega 0.2}{ 10 + j\omega 0.2 } H(\omega) = \frac{j\omega}{50 + j\omega } |H(\omega)| = \frac{|\omega|}{\sqrt{ 50^2 + \omega^2} } \theta_{H(\omega)} = \frac{\pi}{2} - \arctan \Big( \frac{\omega}{50}\Big) \omega_0 = \frac{R}{L} = \frac{10}{0.2} = 50 rad/s

b. Determinar, esquematizar y etiquetar su respuesta de frecuencia, indicando a que tipo de filtro no ideal de frecuencias selectivas se podría asociar su comportamiento.

tarea…

c. Obtener la respuesta impulso h(t) que representa al circuito eléctrico.

h(t) = \mathscr{F} ^{-1} \Big[ H(\omega) \Big] = \mathscr{F} ^{-1} \Big[ \frac{j\omega}{50 + j\omega } \Big]

separando en fracciones parciales y usando la tabla de transformadas de Fourier:

= \mathscr{F} ^{-1} \Big[ 1-\frac{50}{50 + j\omega } \Big] h(t) = \delta (t) - 50 e^{-50t} \mu (t)

d. Determinar la respuesta v2(t) que se obtiene a la salida de dicho sistema cuando tiene una entrada v1(t) = sen 50t [V].
¿Qué puede decir acerca de si el sistema transmite con distorsión o sin distorsión? Justifique su respuesta de manera razonada.

V_1(\omega) = \mathscr{F} \Big[ v_1(t)\Big] = \mathscr{F} \Big[ \sin (50t) \Big] = j\pi \delta (\omega+50) - j\pi \delta (\omega-50) V_2(\omega) = V_1(\omega) H(\omega) V_2(\omega) =\Big( j\pi \delta (\omega+50) - j\pi \delta (\omega-50) \Big) \Big( \frac{j\omega}{50 + j\omega } \Big) =j^2\pi \Big( \delta (\omega+50) \frac{\omega}{50 + j\omega } - \delta (\omega-50) \frac{\omega}{50 + j\omega }\Big) = (-1)\pi \Big( \delta (\omega+50) \frac{\omega}{50 + j\omega }- \delta (\omega-50) \frac{\omega}{50 + j\omega }\Big)

Los términos con impulso desplazados tienen magnitud solo en las posiciones donde el impulso tiene valor 1. En este caso es con ω=±50

V_2(\omega) =\pi \Big( \delta (\omega+50) \frac{(-1)(-50)}{50 - j50 } - \delta (\omega-50) \frac{(-1)50}{50 + j50}\Big)

dividiendo el numerador y denominador para 50 se simplifica a

=\pi \Big( \delta (\omega+50) \frac{1}{1 - j1 } + \delta (\omega-50) \frac{1}{1 + j1}\Big)

multiplicando el primer coeficiente por 1+j y el segundo coeficiente por 1-j, se convierte el denominador en un número real.

=\pi \Big( \delta (\omega+50) \frac{1(1+j)}{(1 - j1) (1+j)} + \delta (\omega-50) \frac{1(1-j)}{(1 + j1)(1-j)}\Big) =\pi \Big( \delta (\omega+50) \frac{1+j}{2} + \delta (\omega-50) \frac{1-j}{2}\Big) =\frac{\pi}{2} \Big( \delta (\omega+50)+j\delta (\omega+50) + \delta (\omega-50) - j\delta (\omega-50) \Big) V_2(\omega) =\frac{\pi}{2} \Big( \delta (\omega+50) + \delta (\omega-50)\Big) + j\frac{\pi}{2} \Big(\delta (\omega+50)- \delta (\omega-50) \Big)

obteniendo v2(t) en el dominio de tiempo,

v_2(t) = \mathscr{F}^{-1} \Big[V_2(\omega) \Big] =\frac{1}{2} \mathscr{F}^{-1} \Bigg[ \pi \Big(\delta (\omega+50) + \delta (\omega-50) \Big )\Bigg] + +\frac{1}{2} \mathscr{F}^{-1} \Bigg[ j\pi \Big(\delta (\omega+50) + \delta (\omega-50) \Big )\Bigg] v_2(t) =\frac{1}{2} \cos(50t) + \frac{1}{2} \sin(50t)

por magnitud y fase, simplificación trigonométrica

v_2(t) =\frac{1}{\sqrt{2}} \sin\Big(50t+\frac{\pi}{4}\Big)

también con Sympy,

>>> v2=(1/2)*sym.cos(50*t)+(1/2)*sym.sin(50*t)
>>> sym.trigsimp(v2)
0.5*sqrt(2)*sin(50*t + pi/4)
>>> 

el resultado es concordante con lo que realiza la función de transferencia, respuesta al impulso H(ω) en ω=50

|H(\omega)| = \frac{|\omega|}{\sqrt{ 50^2 + \omega^2} } = \frac{|50|}{\sqrt{ 50^2 + 50^2} } = \frac{|50|}{\sqrt{ 2(50^2)} } = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \theta_{H(\omega)} = \frac{\pi}{2} - \arctan \Big( \frac{\omega}{50}\Big) = \frac{\pi}{2} - \arctan \Big( \frac{50}{50}\Big) = \frac{\pi}{2}-\frac{\pi}{4} = \frac{\pi}{4}

considerando también que:

\omega_0 = \frac{R}{L} = \frac{10}{0.2} = 50 rad/s