1Eva2011TII_T3 LTI CT H(s) desde expresión con operadores D

1ra Evaluación II Término 2011-2012. 1/Diciembre/2011. TELG1001

Tema 2. (40 puntos) Considere la existencia de un sistema LTI-CT, cuya representación mediante el uso de operadores es la siguiente:

(D^2 + 3 D -28) y(t) = (15D+72) x(t)

Adicionalmente, se conoce que la Región de Convergencia de la función de transferencia del referido sistema es -7 < Re(s) < 4.

Determinar,

a. La función de transferencia H(s) y esquematizar en el plano complejo su diagrama de polos y ceros. Comente sobre la estabilidad del sistema, justificando debidamente su respuesta.

b. La respuesta impulso h(t) de dicho sistema, y la obtención de su valor inicial y final a partir de la aplicación del TVI y TVF.

c. La representación del mencionado sistema, en el dominio de tiempo contínuo, mediante diagrama de bloques.

d. La respuesta de dicho sistema frente a la entrada:

x(t) = e^{-5t} \mu (t)

Referencia: 1Eva2016TII_T2 LTI CT bloques en paralelo-serie con Laplace1Eva2012TII_T4 LTI CT bloques en paralelo-serie con Laplace

1Eva2011TII_T2 LTI CT Respuestas de subsistemas en serie

1ra Evaluación II Término 2011-2012. 1/Diciembre/2011. TELG1001

Tema 2. (30 puntos) Para el sistema LTI_CT integrado por la conexión en serie de dos subsistemas; y conociendo la señal de entrada x(t) junto a la respuesta impulso h(t) para el primer subsistema, se requiere:

a. Determinar, esquematizar y etiquetar la respuesta w(t) que se genera a la salida del primer subsistema, asi como su correspondiente energía.

b. Obtener, esquematizar y etiquetar la salida y(t) que genera el sistema global, así como su correspondiente energía.

c. Conociendo la existencia de la señal z(t), expresar w(t) como una función de  z(t).

1Eva2011TII_T1 LTI DT en serie-paralelo

1ra Evaluación II Término 2011-2012. 1/Diciembre/2011. TELG1001

Tema 1. (30 puntos) Un estudiante de la materia Sistemas Lineales ha determinado que un sistema LTI-DT está integrado por la conexión serie-paralelo de cuatro subsistemas, tal como se muestra en la figura.

Conociendo que:

h_1 [n] = \mu [n] h_2 [n] = \mu [n+2] h_3 [n] = \delta [n-2] h_4 [n] = \alpha_1^n \mu [n]

a. Encontrar la respuesta impulso del sistema completo, es decir h[n], indicando si el sistema integral es FIR o IIR.

b. Determinar, justificando su respuesta, si el sistema es BIBO estable. Comente además sobre la causalidad del mismo.

c. Hallar la respuesta y[n], en forma de mínima expresión, frente a la entrada

x[n] = \alpha_2^n \mu [n]

d. Determinar el valor de y[0] si acaso α1 = 0.20 y α2 = 0.40


Coordinador: Tama Alberto

1Eva2010TI_T4 LTI DT bloques y respuesta impulso

1ra Evaluación I Término 2010-2011. 8/Julio/2010. TELG1001

Tema 4. (25 puntos) Un estudiante de Sistemas Lineales ha encontrado que un determinado sitema LTI-DT causal, en el dominio del tiempo, tiene la siguiente representación:

Determinar:

a. La respuesta impulso h[n]

b. La respuesta y[n] frente a la siguiente excitación:

x[n] = e^{-0.25 n} \mu [n] - e^{-0.50 n} \mu [n]

c. ¿Es el sistema BIBO estable?, justifique su respuesta.

1Eva2012TI_T1 LTI CT Polos y ceros de H(s) con respuesta DC conocida

1ra Evaluación I Término 2012-2013. 5/julio/2012. TELG1001

Tema 1. (30 puntos) El diagrama de polos y ceros de un sistema de segundo orden cuya función de transferencia H(s) es mostrado en la siguiente figura, donde se conoce que la respuesta DC de este sistema es -1. es decir H(j0)=-1.

a. Conociendo el hecho que:

H(s) = \frac{k (s^2 + b_1 s + b_2)}{s^2 + a_1 s + a_2}

determinar el valor de las constantes k, b1,b2, a1 y a2.

b. Encontrar la respuesta impulso h(t) del mencionado sistema.

c. Comente justificadamente acerca de la estabilidad interna y externa del mencionado sistema.

1Eva2010TI_T3 LTI DT subsistemas serie y respuesta impulso

1ra Evaluación I Término 2010-2011. 8/Julio/2010. TELG1001

Tema 3. (25 puntos) El sistema que se muestra en la siguiente figura es el resultante de la combinación de dos subsistemas conectados en cascada.

Determinar:

a. las respuestas impulso de cada subsistema y del sistema completo, es decir h1[n], h2[n], h[n].

h1[n]
h2[n]
h[n]

b. su respuesta y[n], en forma de mínima expresión, frente a la siguiente excitación:

x[n] = e^{-0.5n} \mu [n]

1Eva2010TI_T2 LTI CT diagrama de bloques para H(s)

1ra Evaluación I Término 2010-2011. 8/Julio/2010. TELG1001

Tema 2. (25 puntos) Considere la existencia de un sistema, cuyo esquema del diagrama de bloques en el dominio de la frecuencia compleja, que relaciona la entrada-salida del mismo, es el siguiente:

Determinar:

a. La función de transferencia H(s) del mencionado sistema y esquematizar en el plano complejo los polos y ceros. Comente sobre la estabilidad de este sistema, justificando su respuesta.

b. La respuesta impulso h(t) de dicho sistema, y la obtención de su valor inicial y final a partir de la aplicación del TVI y TVF.

c. La ecuación diferencial de coeficientes constantes que representa al referido sistema.

d. La respusta que se obtendría si la exitación es:

x(t) = e^{-3t} \mu(t)

1Eva2010TI_T1 LTI CT respuesta estado cero desde dx(t)/dt

1ra Evaluación I Término 2010-2011. 8/Julio/2010. TELG1001

Tema 1. (25 puntos) Un estudiante de la materia Sistemas Lineales, ha determinado que la representación esquemática de la respuesta impulso h(t), de un sistema LTI-CT es aquella que se muestra en la siguiente figura.

Si se conoce la derivada de la entrada de dicho sistema, esto es dx(t)/dt, determine y esquematice su respuesta de estado cero, es decir:

y(t) = x(t)⊗h(t)

1Eva2010TII_T4 LTI DT h[n] respuesta a impulso

1ra Evaluación II Término 2010-2011. 9/Diciembre/2010. TELG1001

Tema 4. (25 puntos) Un estudiante de la materia Sistemas Lineales ha determinado que una de las raíces características del sistema LTI-DT causal, que se muestra en la siguiente figura, es γ=1/4. La ecuación de diferencias que relaciona la entrada-salida del mismo es dada por:

y[n] - \frac{5}{4} y[n-1] + \frac{1}{36} y[n-2] + \frac{1}{18} y[n-3] = x[n] - \frac{1}{2} x[n-1]

Determinar:

a. La respuesta impulso h[n] del sistema. Su respuesta debe ser de la forma:

h[n] = a \alpha ^n \mu [n] + b \beta ^n \mu [n] + x \rho ^n \mu [n]
a = b = c =
α = β = ρ =

obtenga los valores pertinentes-

b. ¿Es el sistema BIBO estable?, justifique su respuesta

1Eva2010TII_T3 LTI CT H(s) de bloques en paralelo y retraso

1ra Evaluación II Término 2010-2011. 9/Diciembre/2010. TELG1001

Tema 3. (25 puntos) Considere la existencia de un sistema, cuyo esquema del diagrama de bloques en el dominio de la frecuencia compleja, que relaciona la entrada-salida es el siguiente:

Determinar,

a. La función de transferencia H(s) del mencionado sistema y esquematizar en el plano complejo los polos y ceros. Comente sobre la estabilidad de este sistema, justificando su respuesta.

b. La respuesta impulso h(t) de dicho sistema, y la obtención de su valor inicial y final a partir de la aplicación del TVI y TVF.

c. La representación del mencionado sistema (en el dominio de tiempo contínuo) mediante diagrama de bloques.

d. La respuesta escalón s(t)