1Eva_IIT2007_T1 Distribución Binomial acumulada

1ra Evaluación II Término 2007-2008. 4/Diciembre/2007. ICM00158

Tema 1. Un modelo de uso frecuente en teoría de probabilidad es la distribución binomial acumulada, cuya fórmula es:

F = \sum_{t=0}^{k} \binom{n}{t} p^t (1-p)^{n-t}

Con la fórmula de Newton-Raphson, calcule con cuatro decimales exactos el valor de p tal que F=0.4, dado que n=5 y k=1

Nota: El valor de p debe ser un número real entre 0 y 1


a. Plantear el ejercicio para encontrar h para un t dado, muestre el intervalo de búsqueda y una gráfica.

b. Desarrolle usando el método de Newton-Raphson para tres iteraciones y tolerancia milimétrica.

c. Verifique el orden de convergencia y observe sus resultados usando el algoritmo.

Rúbrica: Planteamiento (5 puntos), iteraciones y error (15 puntos), análisis de la convergencia (5 puntos). observación de resultados, algoritmo y gráficas adjuntos (5 puntos).