1ra Evaluación I Término 2018-2019. 26/junio/2018. MATG1013
Tema 2. (25 puntos) Sea g:[a,b] → R una función continua tal que g(x) ∈ [a,b] para toda x ∈ [a,b] .
Suponga además que g es una función contractiva en [a,b] esto es
\forall x,y \in [a,b]: |g(x)-g(y)| \lt |x-y|
Demuestre o refute las siguientes afirmaciones:
a) g tiene al menos un punto fijo en [a,b]
b) g tiene un punto fijo único en [a,b]
Rúbrica:
Literal a. Construye la función f(x)=x-g(x)=0 , verifica el cambio de signo de f(x) en los extremos del intervalo y concluye que p =g(p) (hasta 15 puntos),
literal b. Supone dos puntos fijos, calcula | p-q |, utiliza la propiedad contractiva y concluye que se produce una contradicción (hasta 10 puntos)