2Eva_IT2011_T2_MN Aproxime integral

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 2. Sea la función y = f(x), 0≤x≤2, con los nodos xi y los valores f( xi ), como se indica:

 x  0.0 0.5 1.0 1.5 2.0
 y=f(x)  0.0 0.8 0.9 0.7 0.3

Se requiere evaluar la siguiente integral relacionada con los datos dados:

A = \int_0^2 g(x) \delta x = \int_0^2 \frac{1}{1+y'} \delta x

Aproxime la integral de g(x) con el método de Simpson 1/3, con n=4 subintervalos.

Previamente obtenga los puntos de g(x) aproximando el valor de la derivada y’ con una fórmula de orden 2.

Estime el error en la aproximación de la derivada.


xi = [ 0.0, 0.5, 1.0, 1.5, 2.0] 
yi = [ 0.0, 0.8, 0.9, 0.7, 0.3]