3Eva_IIT2008_T3_MN Función densidad de probabilidad

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM02188 Métodos Numéricos

Tema 3. (30 puntos) Para que la siguiente función sea útil en el cálculo de probabilidad, se debe encontrar el valor de k tal que el área bajo f(x) sea igual a 1.

f(x)=\begin{cases} kxe^{-x^2}, & x\geq 0\\ 0, & x\lt 0 \end{cases}

Encuentre un valor aproximado de k con el siguiente procedimiento.

a. Separe el integral en dos intervalos [0, 1], [1, ∞]. Mantenga k fuera del integral.

b. Integre en el intervalo [0,1] con la fórmula de Simpson (m=2)

c. Mediante un cambio de variable elimine el límite ∞ en el segundo intervalo e integre aplicando una vez la Cuadratura de Gauss. Recuerde que esta fórmula no requiere evaluar la función en los extremos del intervalo de integración.

d. Obtenga el valor de k igualando a 1 la suma de los dos resultados anteriores