1Eva_IIT2010_T1 Aproximar con polinomio

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 1. La función de variable real f(x) será aproximada con el polinomio de segundo grado P(x) que incluye los tres puntos f(0), f(π/2), f(π).

f(x) = e^x \cos (x) +1 0\leq x \leq \pi

Encuentre la magnitud del mayor error E(x) = f(x) -P(x), que se produciría al usar esta aproximación. Resuelva la ecuación no lineal resultante con la fórmula de Newton con un error máximo de 0.0001.

1Eva_IT2010_T3_MN Precio artículos

1ra Evaluación I Término 2010-2011. 6/Julio/2010. ICM02188. Métodos Numéricos

Tema 3. Un comerciante compra cuatro artículos: arroz, manzanas, papas y tomates.

Estos productos se venden por peso en Kg.

El cajero registra el peso adquirido de cada artículo y el costo total en dólares que debe pagar por los cuatro artículos.

El comerciante desea conocer el precio por Kg. de cada artículo, para lo cual dispone de cuatro facturas con los siguientes datos:

cantidades en Kg
 Factura  Arroz  Manzanas  Papas  Tomates  Costo ($)
 1  2  2  4  1  15.0
 2  2  2  5  2  18.3
 3  4  1  1  2  12.3
 4  2  5  2  1  19.2

a. Formule el modelo matemático para resolver este problema: sistema de ecuaciones lineales

b. Use el método de Gauss-Jordan para calcular la solución. Simultáneamente, transforme la matriz identidad para obtener la inversa de la matriz de coeficientes.

1Eva_IT2010_T2_MN Uso de televisores

1ra Evaluación I Término 2010-2011. 6/Julio/2010. ICM02188. Métodos Numéricos

Tema 2. La curva de encendido de televisores en la ciudad de Guayaquil está en función de la hora del dia y del día de la semana.

https://www.istockphoto.com/es/vector/familia-feliz-viendo-tv-ilustraci%C3%B3n-de-dibujos-animados-modernos-gente-personajes-gm909440758-250490142

Suponga que en un intervalo de 4 horas, un determinado día , el porcentaje de televisores encendidos está dado por la función:

p(x) =\frac{1}{2.5} \Big(-10 \sin \Big(\frac{12x}{7} \Big) e^{-\frac{24x}{7}} + \frac{48x}{7}e^{-\frac{8x}{7}} + 0.8 \Big)

0≤x≤4

x: Tiempo en horas
p: porcentaje en horas de televisores encendidos

a. Encuentre un intervalo en que se encuentre el máximo de la función p

b. Utilice el método de Newton para encontrar el máximo de la función p. Calcule la respuesta con un error máximo de 0.0001

c. Encuentre el mínimo de la función p en el mismo intervalo de cuatro horas con el mismo método y con la misma precisión anteriores.


Gráfica de referencia

 

1Eva_IT2010_T1_MN Demanda y producción sin,log

1ra Evaluación I Término 2010-2011. 6/Julio/2010. ICM02188 Métodos Numéricos

Tema 1. La demanda de un producto en el intervalo de tiempo [0,3] tiene forma sinusoidal.

Al detectar la demanda, una empresa puede iniciar su producción a partir del instante 1, y la cantidad producida tiene forma logaritmica natural.

Se necesita encontrar el instante a partir del cual, la producción satisface a la demanda del producto.

Use el método de la Bisección para localizar el intervalo de la respuesta y obtenga la respuesta con error menor a 0.01