1Eva_2022PAOII_T2 Admisión universitaria – cupos por recursos

1ra Evaluación 2022-2023 PAO II. 22/Noviembre/2022

Tema 2. (35 puntos) Las instituciones de educación superior han comenzado a implementar un nuevo proceso para el registro de aspirantes a las universidades desde el 2023 [1].

Se rendirán dos exámenes: aptitudes, para evaluar el razonamiento lógico; y de conocimientos sobre materias base de la carrera a la que aspira.

Se requiere determinar la distribución de cupos en base a los costos relativos al promedio por estudiante para docencia, infraestructura y servicios mostrados en la tabla.

Costo referencial /carrera Mecatrónica Computación Civil Matemáticas
Docencia 1.5 0.9 0.6 0.7
Infraestructura 0.8 1.4 0.4 0.5
Servicios 0.45 0.55 1.1 0.5

Nota: Los valores de la tabla se establecen para el ejercicio y no corresponden a una referencia publicada.

En carreras como matemáticas de baja demanda, se establece el cupo de 10, mientras que para las demás depende de los otros parámetros referenciales. El total de recursos relativos al promedio por estudiante disponibles son docencia 271, infraestructura 250 y servicios 230.

a. Realice el planteamiento de un sistema de ecuaciones que permita determinar la cantidad máxima de cupos de estudiantes por carrera que podrían ser admitidos con los recursos disponibles para el siguiente año.

b. Seleccione la variable libre considerando lo descrito para el caso dado y presente el sistema de ecuaciones en forma de matriz aumentada.

c. Determine la capacidad usando un método Iterativo con una tolerancia de 10-2. Realice tres iteraciones completas y revise la convergencia del método. Justifique la selección de un vector inicial para X0.

Realice el desarrollo con el algoritmo y adjunte sus respuestas. De ser necesario comente sobre los valores encontrados.

Rúbrica: literal a (5 puntos), literal b (5 puntos), pivoteo por filas(5 puntos), iteraciones (10 puntos), análisis de convergencia (5 puntos), literal d (5 puntos).


Referencias: [1] Espol iniciará proceso de admisión este 21 de noviembre. Eluniverso.com – 19 de noviembre 2022. https://www.eluniverso.com/guayaquil/comunidad/espol-iniciara-proceso-de-admision-este-21-de-noviembre-nota/

[2] Durante la pandemia, Espol registró un aumento de estudiantes matriculados. Estas fueron las carreras con más demanda. Eluniverso.com – 9 de febrero 2022. https://www.eluniverso.com/guayaquil/comunidad/durante-la-pandemia-la-espol-registro-un-aumento-de-estudiantes-matriculados-estas-fueron-las-carreras-con-mas-demanda-nota/

[3] El presupuesto del Estado sube para 18 universidades. Primicias.ec – 18 de noviembre 2022. https://www.primicias.ec/noticias/economia/presupuesto-universidades-proforma/

[4] Así son las carreras más y menos demandadas en Ecuador. Elcomercio.com 21 de octubre de 2022. https://www.elcomercio.com/tendencias/sociedad/carreras-mas-menos-demandadas-ecuador.html

1Eva_2022PAOII_T1 Esfera flotando en agua

1ra Evaluación 2022-2023 PAO II. 22/Noviembre/2022

Tema 1 (35 puntos) Según el principio de Arquímedes, la fuerza de flotación o empuje es igual al peso de el fluido desplazado por la porción sumergida de un objeto.  

Para la esfera de la figura, determine la altura h de la porción que se encuentra sobre el agua considerando las constantes con los valores mostrados.

ρesfera = 200 Kg/m3
ρagua    = 1000 kg/m3
r = 1 m
g =9.8 m/s2

Observe que la porción del volumen sobre el agua de la esfera puede ser determinado como la fórmula presentada.

Fempuje = ρagua Vsumergido g
Fpeso    = ρesfera Vesfera g

V_{sobreagua} = \frac{\pi h^2}{3}(3r-h)

Para el desarrollo del ejercicio use el método del punto fijo.

Rúbrica: Planteamiento (5 puntos), iteraciones con el error (15 puntos), análisis de la convergencia (10 puntos). observación de resultados (5 puntos).

Referencia:
[1] Ejercicio 5.19. p143 Steven C. Chapra. Numerical Methods 7th Edition.
[2] Fuerza de empuje y flotación. Ingenia UdeA. 29 Abril 2015

[3] Problema – Principio de Arquímedes y fuerza de empuje (Archimedes’ principle – problem). Problemas de Física.13 octubre 2019.

1Eva_2022PAOI_T3 Interpolar crecimiento de contagios

1ra Evaluación 2022-2023 PAO I. 5/Julio/2022

Tema 3. (35 puntos). Según los reportes epidemiológicos para el mes de junio-2022, se presenta un aumento de resultados positivos de COVID-19.

Un médico especialista indica que entre los motivos para transmisión y contagio se encuentran que no se usan las mascarilla y las aglomeraciones como las presentadas durante el paro nacional.

Para las últimas semanas, los resultados han pasado desde 1%, 5.6 %, 27 % y hasta 43.5 %.

Día del mes 1 8 15 22
Contagios 1 5.6 27 43.5

Para un análisis de comportamiento de contagios durante el mes, se requiere disponer de un polinomio de interpolación de grado 3 que describa el comportamiento de los contagios.

a) Realice el planteamiento del sistema de ecuaciones que se usaría usando el método de interpolación polinómica.

b) Realice el planteamiento del sistema de ecuaciones en su forma matricial y muestre la matriz aumentada.

c) Desarrolle el pivoteo parcial por filas, indicando las operaciones realizadas en éste proceso

d) Usando el método directo de Gauss-Jordan, muestre las expresiones necesarias para el algoritmo.

e) Para el día 19 se encuentra que el valor correspondiente a contagios es de 37%. Estime el error presentado del modelo para ese día.

f) Desarrolle el ejercicio usando otro método para encontrar el polinomio de interpolación.

Rúbrica: literal a (5 puntos), literal b (2 puntos), literal c (5 puntos), eliminación hacia adelante (5 puntos), eliminación hacia atrás (5 puntos) literal e (3 puntos), literal f (10 puntos).

Referencias: El nivel de positividad para COVID-19 llega a un 40 %; ingresos hospitalarios son pocos, pero aglomeraciones por el paro ponen en alerta a epidemiólogos. Eluniverso.com 4-julio-2022.

https://www.eluniverso.com/noticias/ecuador/nivel-de-positividad-para-covid-19-llega-a-un-40-ingresos-hospitalarios-son-pocos-pero-aglomeraciones-en-el-paro-indigena-ponen-en-alerta-a-epidemiologos-nota/?modulo=destacadas-dos

Ligero incremento de casos de covid-19 en Ecuador. elcomercio.com 17-mayo-2022. https://www.elcomercio.com/tendencias/sociedad/ligero-incremento-casos-covid19-ecuador.html

1Eva_2022PAOI_T2 Capacidad de alimentos para pacientes internos

1ra Evaluación 2022-2023 PAO I. 5/Julio/2022

Tema 2. (35 puntos). Debido al un “paro nacional” en el país, varios productos de primera necesidad escasean o se encuentran con sobreprecio debido a los cierres de vías de acceso en varias ciudades.

En la entrevista a un representante de los comerciantes de un mercado advirtió que disponían de alimentos almacenados, pero que pronto podrían acabarse si no se reestablecen las vías de acceso para los suministros desde el campo.

En una institución como un hospital, se requiere alimentar a los pacientes internados. Dadas las condiciones, se requiere determinar el número de pacientes que se pueden atender con una cantidad limitada de productos diarios, para al menos tres tipos de dietas y aprovechando todos los ingredientes.

Producto\ Paciente Maternidad Pos – operatorio Covid_19 emergencia Suministro diario
Producto A 0.2 0.1 1.7 0.25 135
Producto B 0.5 2 0.05 0.4 320
Producto C 1.5 0.2 0.75 1.4 410

a) Realice el planteamiento del sistema de ecuaciones que permita determinar la cantidad máxima de pacientes de cada grupo que podrían ser atendidos usando todos los productos disponibles. Una vez planteadas las ecuaciones, se le indica que la capacidad de atención para emergencia sea fija en K = 10 pacientes (variable libre).

Encuentre una solución sistema de ecuaciones con el método Jacobi. (Seleccione un vector inicial).

b) Muestre los pasos detallados para la matriz aumentada y pivoteo parcial por filas.

c) Desarrolle al menos 3 iteraciones para el método requerido, con expresiones completas.

d) Realice las observaciones necesarias sobre los errores entre iteraciones y la convergencia.

e) Si se decide no atender a los pacientes del grupo emergencias, ¿Qué aumento individual de cada una de otros grupos de pacientes podría soportarse con la cantidad diaria de alimento disponible? (use el algoritmo.py).

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (9 puntos), literal d (6 puntos), literal d (5 puntos) literal e (5 puntos)

Referencia: Paro nacional: Cuenca pasa por escasez y sobreprecio de productos de primera necesidad por bloqueos. Eluniverso.com. 15-junio-2022. https://www.eluniverso.com/noticias/ecuador/paro-nacional-cuenca-pasa-por-escasez-y-sobreprecio-de-productos-de-primera-necesidad-por-bloqueos-nota/

Comerciantes intentan tomarse supermercados en Cuenca, debido a desabastecimiento. Vistazo.com 27-junio-2022. https://www.vistazo.com/actualidad/nacional/comerciantes-intentan-tomarse-supermercados-en-cuenca-debido-a-desabastecimiento-FD2063623

Ecuador podrá recuperarse del paro en el segundo semestre de 2022. Primicias.ec 4-julio-2022.  https://www.primicias.ec/noticias/economia/ecuador-recuperacion-paro-nacional-segundo-semestre-banco-central/

 

1Eva_2022PAOI_T1 Impacto en trayectoria del drone

1ra Evaluación 2022-2023 PAO I. 5/Julio/2022

Tema 1 (30 puntos) La trayectoria automática de un drone espía en un territorio de guerra esta descrita por x1(t), y1(t).
Drone
x1(t) = cos(t)
y1(t) = sin(2 t)

Antidrone
x2(t) = sin(0.75 t)
y2(t) = k t

Durante un intervalo de tiempo t entre [0,10] segundos, se dispara un misil antidrone con trayectoria descrita por x2(t), y2(t). El antidrone tiene un parámetro de control constante denominado k para y2(t) que se establece antes del disparo.

Encuentre el valor de k que produce el impacto que destruye el Drone.

Para que se produzca el impacto, deben coincidir las coordenadas x,y para ambas trayectorias, al mismo valor de tiempo.

a) Realice el planteamiento del problema usando inicialmente las trayectorias en el eje x, donde para el intervalo de operación del misil antidrone, se observa más de un impacto.

b) Usando el método de Newton-Raphson encuentre el valor de t en el cual se pretende realizar el impacto al drone. Realice al menos 3 iteraciones de forma analítica, use tolerancia de 10-4,

c) Realice el análisis de la convergencia del método.

d) Con el resultado de t anterior, determine el valor de la constante k para la expresión de y2(t) que asegura el impacto contra el drone.

Rúbrica: literal a (5 puntos), iteraciones (9 puntos), errores entre iteraciones(6 puntos), análisis de convergencia(5 puntos), literal d(5 puntos)

Referencia: Domo de Hierro, así funciona el escudo antimisiles de Israel. CNN en español. 15-mayo-2021. https://www.youtube.com/watch?v=idikebBCXA0

Lo que hay que saber sobre los misiles hipersónicos disparados por Rusia contra Ucrania. cnnespanol.cnn.com 10-mayo-2022. https://cnnespanol.cnn.com/2022/05/10/misiles-hipersonicos-rusia-ucrania-trax/

1Eva_2021PAOII_T3 Nutrientes en asociación de cultivos

1ra Evaluación 2021-2022 PAO II. 24/Noviembre/2021

Tema 3. (40 puntos) La asociación de cultivos es la siembra de dos o más especies vegetales muy próximas entre sí, de tal manera que una o ambas pueden obtener tales como la mejora de la productividad, control de plagas, la prevención de enfermedades o adquirir un mejor sabor.

Los beneficios se obtienen a través de la absorción de nutrientes o de cambios en el medio ambiente.

Una forma de medir la absorción de un nutriente de cada especie por ciclo de cultivo es cambiar la cantidad de especies vegetales en distintas parcelas. La diferencia de un nutriente entre el fin e inicio del cultivo se encuentra mostrada en la siguiente tabla.

plátano café cacao Absorción de nutriente
40 110 310 750
400 15 25 445
200 560 310 10

a. Realice el planteamiento del sistema de ecuaciones, presente en la forma Ax=B.

b. De ser necesario, realice operaciones con la matriz aumentada para mejorar la convergencia con un método iterativo.

c. En el contexto del problema, proponga un vector inicial y tolerancia.

d. Realice 3 iteraciones con el método de Gauss-Seidel y estime el error (papel y lápiz)

e. Describa y justifique su observación sobre la convergencia del método y estime una descripción de los resultados.

Rúbrica: literal a (5 puntos), literal b (5 puntos), literal c (5 puntos), iteraciones (15 puntos) cálculo de error(5 puntos), literal d(5 puntos)

Referencia: Asociación de cultivos https://huertocity.com/index.php/asociacion-de-cultivos/
Tabla Asociación de cultivos: 12 ejemplos, importancia. https://ingenieriaambiental.net/asociacion-de-cultivos/

 

1Eva_2021PAOII_T2 Intersección de funciones – Obstrucción Radioenlace

1ra Evaluación 2021-2022 PAO II. 24/Noviembre/2021

Tema 2. (30 puntos) En un enlace radioeléctrico, se denomina “Zona de Fresnel” al espacio entre un emisor y receptor debe estar libre para minimizar atenuaciones a la onda de propagación.

Una obstrucción es una parte del perfil del terreno que se encuentra dentro de la Zona de Fresnel. El perfil del terreno es la expresión del polinomio del tema anterior P3(d1) en el intervalo [0,1300].

Cuando las antenas del transmisor y receptor se encuentran a la misma altura, la parte inferior del lóbulo, f(d1), se determina a partir de las siguientes fórmulas:

Considere los valores de las constantes hantena= 100 m, n =1, λ=0.3278, denlace=3700 m

Para analizar la obstrucción, se debe determinar los puntos de intersección entre P3(d1) y f(d1)

a. Establezca un intervalo de análisis para cada raíz.

b. Realice al menos 3 iteraciones con el método de la Bisección para encontrar la primera raíz (izquierda)

c. Desarrolle al menos 3 iteraciones con el método del Punto fijo para encontrar el segundo punto (derecha)

d. Realice al menos 3 iteraciones con el método de Newton-Raphson para determinar la altura del perfil que genera el mayor obstáculo dentro del intervalo (altura máxima).

Rúbrica: literal a (4 puntos), literal b (10 puntos), literal c (10 puntos), literal d (6 puntos)

Referencia: Zona de Fresnel, https://youtu.be/v371pPLdf_c

1Eva_2021PAOII_T1 Interpolación para perfil de terreno

1ra Evaluación 2021-2022 PAO II. 24/Noviembre/2021

Tema 1. (30 puntos) Para el diseño de los enlaces radioeléctricos “punto a punto” se analiza “Zona de Fresnel” que para una buena propagación de señal debe estar libre de obstrucciones.

La altura o perfil del terreno muestra la sección que produce atenuación en la señal del enlace.

La tabla muestra el perfil para un enlace donde se requiere analizar el intervalo entre 0 y 1300 metros desde la antena ubicada en el extremo izquierdo.

distancia d1 0 350 700 1000 1300 1600 2000 3000 3300 3500 3700
Perfil de Terreno 85 95 90 80 75 70 20 25 42 21 71

a. Plantee y desarrolle un polinomio P3(d1) de grado 3, que describa el perfil del terreno en el intervalo [0,1300] de distancias a la primera antena d1.
b. Calcule el error sobre el o los datos que no se usaron en el intervalo
c. Desarrolle y justifique una propuesta para disminuir los errores encontrados en el literal anterior, sobre el mismo intervalo, es decir obtiene un nuevo polinomio (use algoritmo).
d. Escriba sus conclusiones y recomendaciones sobre los resultados obtenidos entre los dos polinomios.

Rúbrica: literal a (10 puntos), literal b (4 puntos), literal c (10 puntos), literal d (6 puntos)

Referencia: Zona de Fresnel. https://es.wikipedia.org/wiki/Zona_de_Fresnel

1Eva_2021PAOI_T1 Función recursiva y raíces de ecuaciones

1ra Evaluación 2021-2022 PAO I. 6/Julio/2021

Tema 1. (30 puntos) La sucesión mostrada puede ser calculada de forma recursiva para un valor inicial x0.

x_n = ln \Bigg(\frac{1}{2+x_{n-1}} \Bigg)

n = 1, 2, 3, …
x0 = -0.45

a. Realice 7 iteraciones con la sucesión, tabule y grafique los resultados.

Considerando solamente el intervalo  [-0.5,-0.4]

b. ¿Se puede afirmar que para todo valor inicial x0 la sucesión converge? Justifique su respuesta.

En algoritmos de computadora, la forma recursiva de la sucesión puede consumir rápidamente recursos, por lo que se plantea encontrar el valor al que converge la sucesión usando siguiente ecuación:

x +ln(x+2) = 0

x0 = -0.45

c. Encuentre el valor que resuelve la ecuación usando el método de Newton-Raphson con tolerancia de 10-4. Realice al menos 3 iteraciones completas y comente sobre la convergencia.

d. Presente sus conclusiones y recomendaciones para los resultados obtenidos entre el literal b y c.

Rúbrica: literal a (5 puntos), literal b (3 puntos), literal c, verifica intervalo (4 puntos), iteraciones (10 puntos), convergencia (5 puntos), literal d (4 puntos)

 

1Eva_2021PAOI_T3 Interpolar, modelo de contagios 2020

1ra Evaluación 2021-2022 PAO I. 6/Julio/2021

Tema 3 (35 puntos) Para evaluar las medidas de confinamiento aplicadas durante el año 2020 se requiere de un modelo del comportamiento de contagios por unidad de tiempo.

Se disponen de los datos de casos graves por semana mostrados en la tabla y se busca obtener un polinomio de interpolación de grado 4 semejante al mostrado en la figura.

Semana Fecha casos graves
9 2/3/2020 1435
10 9/3/2020 1645
11 16/3/2020 1503
12 23/3/2020 3728
13 30/3/2020 7154
14 6/4/2020 6344
15 13/4/2020 4417
16 20/4/2020 3439
17 27/4/2020 2791
18 4/5/2020 2576
19 11/5/2020 2290
20 18/5/2020 2123
21 25/5/2020 2023
22 1/6/2020 2067
23 8/6/2020 2163
24 15/6/2020 2120
25 22/6/2020 2125

a. Desarrolle el polinomio de interpolación usando los puntos sombreados en la tabla, correspondientes a las semanas 11, 13, 16, 18 y 20.

b. Calcule los errores en el intervalo sobre los datos que no se usaron entre las semanas [11,20]

c. Desarrolle y justifique una propuesta para disminuir los errores encontrados en el literal anterior, sobre el mismo intervalo, es decir obtiene un nuevo polinomio.

d. Calcule los errores en el intervalo para el modelo del literal c y compare con los obtenidos en el literal b.

e. Escriba sus conclusiones y recomendaciones sobre los resultados obtenidos entre los dos polinomios.

Rúbrica: literal a (7 puntos), literal b (5 puntos), literal c (10 puntos), literal d (5 puntos), literal e (8 puntos)


xi = [    9,   10,   11,   12,   13,   14,
         15,   16,   17,   18,   19,   20,
         21,   22,   23,   24,   25,   26 ]
fi = [ 1435, 1645, 1503, 3728, 7154, 6344,
       4417, 3439, 2791, 2576, 2290, 2123,
       2023, 2067, 2163, 2120, 2125, 2224 ]

Referencia:
– Eluniverso.com. 2/07/2021. Casos de coronavirus en Ecuador al viernes 2 de julio: 461.157 confirmados, 21.623 fallecidos y 1′416.916 vacunados. https://www.eluniverso.com/noticias/ecuador/coronavirus-covid-19-ecuador-cifras-vacunados-casos-contagios-muertes-9-junio-2021-nota-18/ .

https://flo.uri.sh/visualisation/5585865/embed

– BBC News Mundo. La “doble curva” del coronavirus y el “falso dilema” entre salvar vidas o la economía. 8/mayo/2020. https://youtu.be/SlTSFkTsZL8