s1Eva_2021PAOI_T3 Interpolar, modelo de contagios 2020

Ejercicio: 1Eva_2021PAOI_T3 Interpolar, modelo de contagios 2020

literal a

Los datos de los pacientes casos graves entre las semanas 11 a la 20, que son el intervalo donde será válido el polinomio de interpolación son:

semana 11 12 13 14 15 16 17 18 19 20
casos graves 1503 3728 7154 6344 4417 3439 2791 2576 2290 2123

de los cuales solo se usarán los indicados en el literal a : 11,13,16,18,20.

xi0 = [    9,   10,   11,   12,   13,   14,
          15,   16,   17,   18,   19,   20,
          21,   22,   23,   24,   25,   26 ])
fi0 = [ 1435, 1645, 1503, 3728, 7154, 6344,
        4417, 3439, 2791, 2576, 2290, 2123,
        2023, 2067, 2163, 2120, 2125, 2224 ])
xi = [  11,   13,   16,   18,   20]
fi = [1503, 7154, 3439, 2576, 2123]

Se observa que los datos estan ordenados en forma ascendente respecto a la variable independiente, tambien se determina que no se encuentran equidistantes entre si (13-11=2, 16-13=3). Por lo que se descarta usar el método de diferencias finitas avanzadas.

Los métodos que se podrían usar con puntos no equidistantes en el eje semanas serían el método de diferencias divididas de Newton o el  método de Lagrange.

Seleccionando por ejemplo, Diferencias divididas de Newton, donde primero se realiza la tabla:

xi fi f[x1,x0] f[x2,x1,x0] f[x3,x2,x1,x0] f[x4,x3,x2,x1,x0]
11 1503 =(7154-1503) /(13-11) = 2825.5 =(-1238.33-2835.5) /(16-11) = -812.76 =(161.36-(-812.76)) /(18-11) = 139.16 =(-15.73-139.16) /(20-11) = -17.21
13 7154 (3439-7154) /(16-13) = -1238.33 (-431.5-(-1238.33)) /(18-13) = 161.36 (51.25-161.36) /(20-13)= -15.73 —-
16 3439 (2576-3439) /(18-16) = -431.5 (-226.5-(-431.5)) /(20-16) = 51.25 —-
18 2576 (2123-2576) /(20-18) = -226.5 —-
20 2123 —-

con lo que se puede contruir el polinomio usando las diferencias divididas para el intervalo dado:

[2825.5    -812.76  139.16  -17.21]
p_4(x) = 1503 + 2825.5(x-11) - 812.76(x - 13)(x - 11) + 139.16(x - 16)(x - 13)(x - 11) - 17.21(x - 18)(x - 16) (x - 13) (x - 11)

Simplificando el algoritmo se tiene:

p_4(x) = - 1172995.28 + 298304.50 x - 27840.50x^2 + 1137.36x^3 - 17.21 x^4


literal b

El cálculo de los errores se puede realizar usando el polinomio de grado 4 encontrado, notando que los errores deberían ser cero para los puntos usados para el modelo del polinomio.

xi fi p4(x) |error|
11 1503 1503 0
12 3728 6110.96 2382.96
13 7154 7154 0
14 6344 6293.18 50.81
15 4417 4776.52 359.52
16 3439 3439 0
17 2791 2702.53 88.46
18 2576 2576 0
19 2290 2655.22 365.22
20 2123 2123 0

literal c

Podría aplicarse uno de varios criterios, lo importante por lo limitado del tiempo en la evaluación son las conclusiones y recomendaciones expresadas en el literal e, basadas en lo realizado en los literales c y d. Teniendo como opciones:

– cambiar uno de los puntos selecionados, mateniendo así el grado del polinomio
– aumentar el número de puntos usados para armar el polinomio con grado mayor
– dividir el intervalo en uno o mas segmentos, con el correspondiente número de polinomios.

Se desarrolla la opción de cambiar uno de los puntos seleccionados, usando para esta ocasión como repaso la interpolación de Lagrange. Para los puntos se usa el punto con mayor error de la tabla del literal anterior y se elimina el punto penúltimo, es decir se usa la semana 12 en lugar de la semana 18 de la siguiente forma:

xi = [  11,   12,   13,   16,   20]
fi = [1503, 3728, 7154, 3439, 2123]
p_4(x) = 1503 \frac{(x-12)(x-13)(x-16)(x-20)}{(11-12)(11-13)(11-16)(11-20)} + 3728\frac{(x-11)(x-13)(x-16)(x-20)}{(12-11)(12-13)(12-16)(12-20)} + 7154\frac{(x-11)(x-12)(x-16)(x-20)}{(13-11)(13-12)(13-16)(13-20)} + 3439\frac{(x-11)(x-12)(x-13)(x-20)}{(16-11)(16-12)(16-13)(16-20)} + 2123\frac{(x-11)(x-12)(x-13)(x-16)}{(20-11)(20-12)(20-13)(20-16)}

Simplificando el polinomio:

p_4(x) = \frac{46927445}{21} - \frac{1655552687}{2520} x + \frac{715457663}{10080}x^2 - \frac{8393347}{2520} x^3 + \frac{577153}{10080} x^4

literal d

El cálculo de los errores se puede realizar usando el polinomio de grado 4 encontrado, notando que los errores deberían ser cero para los puntos usados para el modelo del polinomio.

xi fi p4(x) error
11 1503 1503 0
12 3728 3728 0
13 7154 7154 0
14 6344 8974.01 2630.01
15 4417 7755.22 3338.22
16 3439 3439 0
17 2791 -2659.13 -5450.13
18 2576 -7849.45 -10425.45
19 2290 -8068.1 -10358.1
20 2123 2123 0

literal e

El cambio aplicado a los puntos usados en el modelo del polinomio disminuyó el error entre las semanas 11 a 13. Sin embargo la magnitud del error aumentó  para las semanas posteriores a la 13, es decir aumentó la distorsión de la estimación y se recomienda realizar otras pruebas para mejorar el modelo aplicando los otros criterios para determinar el que tenga mejor desempeño respecto a la medida de error.



Intrucciones en Python

Literal a y b. Desarrollado a partir del algoritmo desarrollado en clases:

# Polinomio interpolación
# Diferencias Divididas de Newton
# Tarea: Verificar tamaño de vectores,
#        verificar puntos equidistantes en x
import numpy as np
import sympy as sym
import matplotlib.pyplot as plt

# INGRESO , Datos de prueba
xi0 = np.array([    9,   10,   11,   12,   13,   14,
                   15,   16,   17,   18,   19,   20,
                   21,   22,   23,   24,   25,   26 ])
fi0 = np.array([ 1435, 1645, 1503, 3728, 7154, 6344,
                 4417, 3439, 2791, 2576, 2290, 2123,
                 2023, 2067, 2163, 2120, 2125, 2224 ])

xi1 = np.array([   11,   12,   13,   14,   15,   16,
                   17,   18,   19,   20 ])
fi1 = np.array([ 1503, 3728, 7154, 6344, 4417, 3439,
                 2791, 2576, 2290, 2123 ])

xi = np.array([  11,   13,   16,   18,   20])
fi = np.array([1503, 7154, 3439, 2576, 2123])

# PROCEDIMIENTO

# Tabla de Diferencias Divididas Avanzadas
titulo = ['i   ','xi  ','fi  ']
n = len(xi)
ki = np.arange(0,n,1)
tabla = np.concatenate(([ki],[xi],[fi]),axis=0)
tabla = np.transpose(tabla)

# diferencias divididas vacia
dfinita = np.zeros(shape=(n,n),dtype=float)
tabla = np.concatenate((tabla,dfinita), axis=1)

# Calcula tabla, inicia en columna 3
[n,m] = np.shape(tabla)
diagonal = n-1
j = 3
while (j < m):
    # Añade título para cada columna
    titulo.append('F['+str(j-2)+']')

    # cada fila de columna
    i = 0
    paso = j-2 # inicia en 1
    while (i < diagonal):
        denominador = (xi[i+paso]-xi[i])
        numerador = tabla[i+1,j-1]-tabla[i,j-1]
        tabla[i,j] = numerador/denominador
        i = i+1
    diagonal = diagonal - 1
    j = j+1

# POLINOMIO con diferencias Divididas
# caso: puntos equidistantes en eje x
dDividida = tabla[0,3:]
n = len(dfinita)

# expresión del polinomio con Sympy
x = sym.Symbol('x')
polinomio = fi[0]
for j in range(1,n,1):
    factor = dDividida[j-1]
    termino = 1
    for k in range(0,j,1):
        termino = termino*(x-xi[k])
    polinomio = polinomio + termino*factor

# simplifica multiplicando entre (x-xi)
polisimple = polinomio.expand()

# polinomio para evaluacion numérica
px = sym.lambdify(x,polisimple)

# calcula errores en intervalo usado
pfi1 = px(xi1)
errado1 = np.abs(fi1-pfi1)

# Puntos para la gráfica
muestras = 101
a = np.min(xi)
b = np.max(xi)
pxi = np.linspace(a,b,muestras)
pfi = px(pxi)

# SALIDA
np.set_printoptions(precision = 4)
print('Tabla Diferencia Dividida')
print([titulo])
print(tabla)
print('dDividida: ')
print(dDividida)
print('polinomio: ')
print(polinomio)
print('polinomio simplificado: ' )
print(polisimple)
print('errores en intervalo:')
print(xi1)
print(errado1)

# Gráfica
plt.plot(xi0,fi0,'o', label = 'Puntos')
plt.plot(xi,fi,'ro', label = 'Puntos')
for i in range(0,n,1):
    etiqueta = '('+str(xi[i])+','+str(fi[i])+')'
    plt.annotate(etiqueta,(xi[i],fi[i]))
plt.plot(pxi,pfi, label = 'Polinomio')
plt.legend()
plt.xlabel('xi')
plt.ylabel('fi')
plt.title('Diferencias Divididas - Newton')
plt.grid()
plt.show()

Literal c y d. Se puede continuar con el algoritmo anterior. Como repaso se adjunta un método diferente al anterior.

# Interpolacion de Lagrange
# divisores L solo para mostrar valores
import numpy as np
import sympy as sym
import matplotlib.pyplot as plt

# INGRESO , Datos de prueba
xi0 = np.array([    9,   10,   11,   12,   13,   14,
                   15,   16,   17,   18,   19,   20,
                   21,   22,   23,   24,   25,   26 ])
fi0 = np.array([ 1435, 1645, 1503, 3728, 7154, 6344,
                 4417, 3439, 2791, 2576, 2290, 2123,
                 2023, 2067, 2163, 2120, 2125, 2224 ])

xi2 = np.array([   11,   12,   13,   14,   15,   16,
                   17,   18,   19,   20 ])
fi2 = np.array([ 1503, 3728, 7154, 6344, 4417, 3439,
                 2791, 2576, 2290, 2123 ])

xi = np.array([  11,   12,   13,   16,   20])
fi = np.array([1503, 3728, 7154, 3439, 2123])

# PROCEDIMIENTO
# Polinomio de Lagrange
n = len(xi)
x = sym.Symbol('x')
polinomio = 0
divisorL = np.zeros(n, dtype = float)
for i in range(0,n,1):
    
    # Termino de Lagrange
    numerador = 1
    denominador = 1
    for j  in range(0,n,1):
        if (j!=i):
            numerador = numerador*(x-xi[j])
            denominador = denominador*(xi[i]-xi[j])
    terminoLi = numerador/denominador

    polinomio = polinomio + terminoLi*fi[i]
    divisorL[i] = denominador

# simplifica el polinomio
polisimple = polinomio.expand()

# para evaluación numérica
px = sym.lambdify(x,polisimple)

# calcula errores en intervalo usado
pfi2 = px(xi2)
errado2 = np.abs(fi2-pfi2)

# Puntos para la gráfica
muestras = 101
a = np.min(xi)
b = np.max(xi)
pxi = np.linspace(a,b,muestras)
pfi = px(pxi)

# SALIDA
print('    valores de fi: ',fi)
print('divisores en L(i): ',divisorL)
print()
print('Polinomio de Lagrange, expresiones')
print(polinomio)
print()
print('Polinomio de Lagrange: ')
print(polisimple)
print('errores en intervalo:')
print(xi2)
print(errado2)

# Gráfica
plt.plot(xi0,fi0,'o', label = 'Puntos')
plt.plot(pxi,pfi, label = 'Polinomio')
plt.legend()
plt.xlabel('xi')
plt.ylabel('fi')
plt.title('Interpolación Lagrange')
plt.show()