Ejercicio: 2Eva_IT2018_T2 Deducir Simpson 1/3
Para el problema, se usan los puntos: [a,f(a)], [b,f(b)] y [c,f(c)]
por donde pasa la curva f(x) aproximada a un polinomio de grado 2, f(x) \approx p(x)
Como referencia se usa la gráfica para relacionar a, b, c y h:
Primer Integral
Para el primer integral I_1= \int_a^b L_a f(a) dx se tiene que:
L_a = \frac{(x-b)(x-c)}{(a-b)(a-c)} = \frac{(x-b)(x-c)}{(-2h)(-h)} L_a = \frac{(x-b)(x-c)}{2h^2}se convierte en:
I_1 = \int_a^b \frac{(x-b)(x-c)}{2h^2} f(a) dx = \frac{f(a)}{2h^2} \int_a^b (x-b)(x-c)dxPara dejar la parte del integral en función de h, a y b, teniendo que c está en la mitad de [a,b], es decir c = (a+b)/2 , se usa:
u = x-apor lo que \frac{du}{dx}=1 y du = dx
x-c = (u+a) - \frac{a+b}{2} = u+ \frac{a-b}{2} = u - \frac{b-a}{2} x-c = u-h x-b = (u+a)-b = u-2\Big(\frac{b-a}{2}\Big) = u-2hSe actualiza el integral de x entre [a,b] usando u = x-a, que se convierte el rango para u en [0, b-a] que es lo mismo que [0,2h]
\int_a^b (x-b)(x-c)dx = \int_0^{2h} (u-2h)(u-h)du = = \int_0^{2h} \Big( u^2 - 2hu - uh + 2h^2 \Big) du = \int_0^{2h} \Big( u^2 - 3hu + 2h^2 \Big) du = \frac{u^3}{3}- 3h\frac{u^2}{2}+ 2h^2u \Big|_0^{2h} = \frac{(2h)^3}{3}- 3h\frac{(2h)^2}{2} + 2h^2(2h) -(0-0+0) = \frac{8h^3}{3}- 6h^3 + 4h^3 =\frac{8h^3}{3}- 2h^3 = \frac{2h^3}{3}resultado que se usa en I1
I_1= \frac{f(a)}{2h^2}\frac{2h^3}{3} =\frac{h}{3} f(a)que es el primer término de la fórmula general de Simpson 1/3
Segundo Integral
Para el Segundo integral I_2= \int_a^b L_c f(c) dx se tiene que:
L_c = \frac{(x-a)(x-b)}{(c-a)(c-b)} = \frac{(x-a)(x-b)}{(h)(-h)} L_c = \frac{(x-a)(x-b)}{-h^2}se convierte en:
I_2 = \frac{f(c)}{-h^2} \int_a^b (x-a)(x-b) dx = \frac{f(c)}{-h^2} \int_0^{2h} (u)(u-2h) dusiendo:
\int_0^{2h}(u^2-2hu)du=\Big(\frac{u^3}{3}-2h\frac{u^2}{2}\Big)\Big|_0^{2h} =\frac{(2h)^3}{3}-h(2h)^2-(0-0) =\frac{8h^3}{3}-4h^3 = -\frac{4h^3}{3}usando en I2
I_2 = \frac{f(c)}{-h^2}\Big(-\frac{4h^3}{3}) = \frac{h}{3}4f(c)Tarea: Continuar las operaciones para y tercer integral para llegar a la fórmula general de Simpson 1/3:
I = \frac{h}{3} \Big( f(a)+4f(c) + f(b) \Big)