s2Eva_IT2019_T1 Esfuerzo en pulso cardiaco

Ejercicio: 2Eva_IT2019_T1 Esfuerzo en pulso cardiaco

Para resolver el ejercicio, la función a integrar es el cuadrado de los valores. Para minimizar los errores se usarán TODOS los puntos muestreados, aplicando los métodos adecuados.
Con aproximación de Simpson se requiere que los tamaños de paso sean iguales en cada segmento.
Por lo que primero se revisa el tamaño de paso entre lecturas.

tamaño de paso h:
[0.04 0.04 0.02 0.01 0.01 0.01 0.03 0.04 0.03 0.02 0.  ]
tiempos:
[0.   0.04 0.08 0.1  0.11 0.12 0.13 0.16 0.2  0.23 0.25]
ft:
[ 10.  18.   7.  -8. 110. -25.   9.   8.  25.   9.   9.]

Observando los tamaños de paso se tiene que:
– entre dos tamaños de paso iguales se usa Simpson de 1/3
– entre tres tamaños de paso iguales se usa Simpson de 3/8
– para tamaños de paso variables se usa trapecio.

Se procede a obtener el valor del integral,

Intervalo [0,0.8], h = 0.04

I_{S13} = \frac{0.04}{3}(10^2+4(18^2)+7^2)

Intervalo [0.08,0.1], h = 0.02

I_{Tr1} = \frac{0.02}{2}(7^2+(-8)^2)

Intervalo [0.1,0.13], h = 0.01

I_{S38} = \frac{3}{8}(0.01)((-8)^2+3(110)^2+3(-25)^2+9^2)

Intervalo [0.13,0.25], h = variable

I_{Tr2} = \frac{0.03}{2}(9^2+8^2) I_{Tr3} = \frac{0.04}{2}(8^2+25^2) I_{Tr4} = \frac{0.03}{2}(25^2+9^2) I_{Tr5} = \frac{0.02}{2}(9^2+9^2)

El integral es la suma de los valores parciales, y con el resultado se obtiene el valor Xrms requerido.

I_{total} = \frac{1}{0.08-0}I_{S13}+\frac{1}{0.1-0.08}I_{Tr1} +\frac{1}{0.13-0.1}I_{S38} + \frac{1}{0.16-0.13}I_{Tr2} + \frac{1}{0.2-0.16}I_{Tr3} +\frac{1}{0.23-0.2}I_{Tr4} + \frac{1}{0.25-0.23}I_{Tr5} X_{rms} = \sqrt{I_{total}}

Los valores resultantes son:

Is13:  19.26666666666667
ITr1:  1.1300000000000001
Is38:  143.7
ITr2:  2.175
ITr3:  13.780000000000001
ITr4:  10.59
ITr5:  1.62
Itotal:  5938.333333333333
Xrms:  77.06058222809722

Tarea: literal b

Para Simpson 1/3

error_{trunca} = -\frac{h^5}{90} f^{(4)}(z)

Para Simpson 3/8

error_{truncamiento} = -\frac{3}{80} h^5 f^{(4)} (z)

Para trapecios

error_{truncar} = -\frac{h^3}{12}f''(z)


Algoritmo en Python

# 3Eva_IT2019_T1 Esfuerzo Cardiaco
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
t  = np.array([0.0,0.04,0.08,0.1,0.11,0.12,0.13,0.16,0.20,0.23,0.25])
ft = np.array([10., 18, 7, -8, 110, -25, 9, 8, 25, 9, 9])

# PROCEDIMIENTO
# Revisar tamaño de paso h
n = len(t)
dt = np.zeros(n, dtype=float)
for i in range(0,n-1,1):
    dt[i]=t[i+1]-t[i]

# Integrales
Is13 = (0.04/3)*((10)**2 + 4*((18)**2) + (7)**2)
ITr1 = (0.02/2)*((7)**2 + (-8)**2)
Is38 = (3/8)*0.01*((-8)**2 + 3*((110)**2) + 3*((-25)**2) + (9)**2)

ITr2 = (0.03/2)*((9)**2 + (8)**2)
ITr3 = (0.04/2)*((8)**2 + (25)**2)
ITr4 = (0.03/2)*((25)**2 + (9)**2)
ITr5 = (0.02/2)*((9)**2 + (9)**2)

Itotal = (1/(0.08-0.0))*Is13 + (1/(0.1-0.08))*ITr1
Itotal = Itotal + (1/(0.13-0.1))*Is38 + (1/(0.16-0.13))*ITr2
Itotal = Itotal + (1/(0.20-0.16))*ITr3 + (1/(0.23-0.20))*ITr4
Itotal = Itotal + (1/(0.25-0.23))*ITr5
Xrms = np.sqrt(Itotal)

# SALIDA
print('tamaño de paso h:')
print(dt)
print('tiempos:')
print(t)
print('ft: ')
print(ft)
print('Is13: ', Is13)
print('ITr1: ', ITr1)
print('Is38: ', Is38)
print('ITr2: ', ITr2)
print('ITr3: ', ITr3)
print('ITr4: ', ITr4)
print('ITr5: ', ITr5)
print('Itotal: ', Itotal)
print('Xrms: ', Xrms)

# Grafica
plt.plot(t,ft)
for i in range(1,n,1):
    plt.axvline(t[i], color='green', linestyle='dashed')
plt.xlabel('tiempo s')
plt.ylabel('valor sensor')
plt.title('Un pulso cardiaco con sensor')
plt.show()