3Eva_2024PAOI_T1 EDO Salto Bungee extiende y estira toda la cuerda

3ra Evaluación 2024-2025 PAO I. 17/Septiembre/2024

Tema 1. (35 puntos) Salto Bungee 01
La ecuación diferencial para la velocidad de alguien que practica el salto del bungee es diferente según si el saltador ha caído una distancia en la que la cuerda está extendida por completo y comienza a estirarse o encogerse.

Si la distancia recorrida es menor que la longitud de la cuerda, el saltador sólo está sujeto a las fuerzas gravitacional y de arrastre de la cuerda.

\frac{d^2y}{dt^2} = g - signo(v) \frac{C_d}{m}\Big( \frac{dy}{dt}\Big)^2 y \leq L

Salto Bungee 02Suponga que las condiciones iniciales son:

y(0) =0

\frac{dy(0)}{dt} = 0

Una vez que la cuerda comienza a estirarse, también deben incluirse las fuerzas del resorte y del amortiguamiento de la cuerda.

\frac{d^2y}{dt^2} = g - signo(v) \frac{C_d}{m}\Big( \frac{dy}{dt}\Big)^2 -\frac{k}{m}(y-L) - \frac{\gamma}{m}( \frac{dy}{dt}\Big) y \gt L
dy/dt m/s velocidad (v)
t s tiempo
g 9.8 m/s2 gravedad
cd 0.25 kg/m coeficiente de arrastre
m 68.1 Kg masa
L 30 m Longitud de la cuerda
k 40 N/m constante de resorte de la cuerda
γ 8 N s/m coeficiente de amortiguamiento de la cuerda
signo(v) función que devuelve –1, 0 y 1, para v negativa, cero y positiva, respectivamente

En conocimiento que la primera ecuación es válida solo hasta tc=2.55, L=30mts, v= 23.20752.
Encuentre el tiempo td cuando se alcanza la longitud MÁXIMA de la cuerda extendida y estirada por completo, es decir y>L, con velocidad = 0. (solo 2da ecuación)

a. Realice el planteamiento del ejercicio usando Runge-Kutta de 2do Orden

b. Desarrolle tres iteraciones para y(t) con tamaño de paso h=0.5

c. Usando el algoritmo, aproxime la solución para y en el intervalo entre [0,tc], adjunte sus resultados.txt

d. Indique el valor de td, muestre cómo mejorar la precisión y realice sus observaciones sobre los resultados.

Observación: dy/dt = v, función signo(v) en Numpy:np.sign(v)

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c resultados.txt y grafica.png (10 puntos), literal d (5 puntos),

Referencia: [1] Chapra. capítulo 28. Ejercicio 28.41 p852.

[2] Extreme Bungy Jumping with Cliff Jump Shenanigans! Play On in New Zealand! 4K! – devinsupertramp. 23 mar 2015.

 

2Eva_2024PAOI_T1 EDO Salto Bungee tiempo extiende cuerda

2da Evaluación 2024-2025 PAO I. 28/Agosto/2024

Tema 1. (30 puntos) Salto Bungee 01
La ecuación diferencial para la velocidad de alguien que practica el salto del bungee es diferente según si el saltador ha caído una distancia en la que la cuerda está extendida por completo y comienza a estirarse o encogerse.

Si la distancia recorrida es menor que la longitud de la cuerda, el saltador sólo está sujeto a las fuerzas gravitacional y de arrastre de la cuerda.

\frac{d^2y}{dt^2} = g - signo(v) \frac{C_d}{m}\Big( \frac{dy}{dt}\Big)^2 y \leq L

Salto Bungee 02Suponga que las condiciones iniciales son:

y(0) =0

\frac{dy(0)}{dt} = 0

Una vez que la cuerda comienza a estirarse, también deben incluirse las fuerzas del resorte y del amortiguamiento de la cuerda.

\frac{d^2y}{dt^2} = g - signo(v) \frac{C_d}{m}\Big( \frac{dy}{dt}\Big)^2 -\frac{k}{m}(y-L) - \frac{\gamma}{m}( \frac{dy}{dt}\Big) y \gt L
dy/dt m/s velocidad (v)
t s tiempo
g 9.8 m/s2 gravedad
cd 0.25 kg/m coeficiente de arrastre
m 68.1 Kg masa
L 30 m Longitud de la cuerda
k 40 N/m constante de resorte de la cuerda
γ 8 N s/m coeficiente de amortiguamiento de la cuerda
signo(v) función que devuelve –1, 0 y 1, para v negativa, cero y positiva, respectivamente

Encuentre el tiempo tc y la velocidad de la persona cuando se alcanza la longitud de la cuerda extendida y sin estirar (30 m), es decir y<L, aún se entra cayendo signo(v)=1. (solo primera ecuación)

a. Realice el planteamiento del ejercicio usando Runge-Kutta de 2do Orden

b. Desarrolle tres iteraciones para y(t) con tamaño de paso h=0.5

c. Usando el algoritmo, aproxime la solución para y en el intervalo entre [0,tc], adjunte sus resultados.txt

d. Indique el valor de tc, muestre cómo mejorar la precisión y realice sus observaciones sobre los resultados.

Observación: dy/dt = v, función signo(v) en Numpy:np.sign(v)

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c resultados.txt y grafica.png (5 puntos), literal d (5 puntos),

Referencia: [1] Chapra. capítulo 28. Ejercicio 28.41 p852.

[2] Extreme Bungy Jumping with Cliff Jump Shenanigans! Play On in New Zealand! 4K! – devinsupertramp. 23 mar 2015.

 

2Eva_2023PAOII_T2 Cable cuelga entre apoyos A y B

2ra Evaluación 2023-2024 PAO II. 30/Enero/2024

Tema 2 (40 puntos) Un cable cuelga de dos apoyos en A y B. cable colgante entre apoyos

El cable sostiene una carga distribuida cuya magnitud varía con x según la ecuación

w = w_0 \Big[ 1+ \sin \Big(\frac{\pi x}{2l_B} \Big) \Big]

donde w0 = 1 000 lbs/ft y T0. = 0.588345×106.
La pendiente del cable (dy/dx) = 0 en x = 0, que es el punto más bajo del cable.

También es el punto donde la tensión del cable alcanza un mínimo de T0. La ecuación diferencial que gobierna el cable es

\frac{d^2y}{dx^2} = \frac{w_0}{T_0} \Big[ 1+ \sin \Big(\frac{\pi x}{2l_B} \Big) \Big]

a. Realice el planteamiento del ejercicio usando Runge-Kutta de 2do Orden

b. Desarrolle tres iteraciones para y(x) con tamaño de paso h=0.5

c. Usando el algoritmo, aproxime la solución para x en el intervalo entre [0,200], adjunte sus resultados.txt en la evaluación.

d. Realice sus observaciones sobre los resultados obtenidos sobre la altura y(200) alcanzada en el extremo derecho del cable y lo indicado en la gráfica del enunciado.

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c resultados.txt (10 puntos), grafica.png (5 puntos), literal d (5 puntos),

Referencia: Cable entre dos apoyos con carga distribuida. Chapra & Canale. 5ta Ed. Ejercicio 28.21. P849

3Eva_2023PAOI_T4 Especies en competencia por recursos

3ra Evaluación 2023-2024 PAO I. 12/Septiembre/2023

Tema 4. (30 puntos) especies en competencia por recursosConsidere dos especies de animales que ocupan el mismo ecosistema, en competencia por los recursos de alimentos y espacio definidas por:

\frac{dx}{dt} = x(2 - 0.4 x - 0.3 y) \frac{dy}{dt} = y( 1 - 0.1 y - 0.3 x)

Donde las poblaciones de x(t) y y(t) se miden en miles y t en años. Use un método numérico para analizar las poblaciones en un periodo largo para el caso que:  x(0)=1.5, y(0)=3.5

a. Realice el planteamiento del ejercicio usando Runge-Kutta de 2do Orden

b. Desarrolle tres iteraciones para x(t), y(t) con tamaño de paso h=0.5.

c. Usando el algoritmo, aproxime la solución entre t=0 a t=10 años, adjunte sus resultados en la evaluación.

d. Realice una observación sobre el crecimiento de la población de las especies y(t) a lo largo del tiempo.

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c (5 puntos), literal d (5 puntos)

Referencia: [1] Modelos de competencia ejercicio 10. Zill, Dennis G. Ecuaciones diferenciales con aplicaciones de modelado. Edición 9. P109. p111.

[2] Competition in ecosystems. Stile Education. 11 septiembre 2019.

2Eva_2023PAOI_T2 Péndulo vertical amortiguado

2da Evaluación 2023-2024 PAO I. 29/Agosto/2023

Tema 2 (35 puntos) Una mejor aproximación a un péndulo oscilante con un ángulo θ más amplio y con un coeficiente de amortiguamiento μ se expresa con una ecuación diferencial ordinaria de segundo orden.

\frac{d^2 \theta}{dt^2} = -\mu \frac{d\theta}{ dt}-\frac{g}{L}\sin (\theta)

g = 9.81 m/s2
L = 2 m
θ(0) = π/4 rad
θ’ (0) = 0 rad/s

El péndulo se suelta desde el reposo, desde un ángulo de π/4 respecto al eje vertical. El coeficiente de amortiguamiento μ=0.5 es proporcional a la velocidad angular.

a. Realice el planteamiento del ejercicio usando Runge-Kutta de 2do Orden

b. Desarrolle tres iteraciones para θ(t) con tamaño de paso h=0.2

c. Usando el algoritmo, aproxime la solución entre t=0 a t=10 s, adjunte sus resultados en la evaluación.

d. Realice una observación sobre el movimiento estimado del péndulo a lo largo del tiempo.

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c (10 puntos), literal d (5 puntos)

Referencia: 2Eva_IT2019_T2 Péndulo vertical

Vista general de ecuaciones diferenciales I Capítulo 1, 6min 54s. 3Blue1Brown 31-Marzo-2023.

3Eva_2022PAOII_T3 EDO cabezal lector en disco duro

3ra Evaluación 2022-2023 PAO II. 7/febrero/2023

Tema 3. (35 puntos) El objetivo de un sistema de Disco duro es posicionar con precisión el dispositivo de lectura en la pista buscada y moverse entre una pista y otra. disco duro lectora01

Se requiere identificar el plato de disco, el sensor y el controlador.

El disco duro usa un motor DC de imán permanente para posicionar el brazo lector con el sensor en un extremo. Un resorte metálico se usa para permitir que el cabezal flote sobe el disco a una distancia menor a 100nm.

El cabezal toma lectura del flujo magnético y da una señal al amplificador.

Suponiendo que dispone del dispositivo de lectura de precisión, una aproximación del modelo de control del motor con Ka=40, se supone que el brazo es rígido con parámetros como los mostrados, el sistema se puede aproximar como un sistema de orden 2 en el dominio s o en su forma de ecuación diferencial.

Y(s)(s^2+20s+5K_a )=X(s)5K_a \frac{\delta^2}{\delta t^2 } y(t) + 20 \frac{\delta}{\delta t} y(t) + 5 K_a y(t) = x(t) 5 K_a

y(0) = 0         y’(0) = 0

x(t) = \begin{cases} 0 & t\lt 0 \\ 1 & t≥0 \end{cases}

Encuentre la respuesta del sistema y(t) ante una señal de entrada x(t), con las condiciones iniciales dadas.

a. Plantee la solución usando el método de Runge-Kutta de 2do orden.
b. Desarrolle tres iteraciones para Δt = 0.01
c. Estime el error del modelo usado
d. Realice la gráfica para y(t) para el intervalo de [0,1] segundos. Adjunte los archivos de los algoritmos.py usados para los cálculos, los resultados.txt y gráfica.png

Rúbrica:  literal a (5 puntos), literal b (15 puntos), literal c (5 puntos), literal d y adjuntos (10 puntos)

Referencia: Bishop R. & Dorf R. (2017) 13th Edition. 2.10 sequential Design example: Disk Drive read system. p122.
How do Hard Disk Drives Work? Branch Education. 22 diciembre 2022.

2Eva_2022PAOII_T2 EDO – población de protestantes en una sociedad

2da Evaluación 2022-2023 PAO II. 24/Enero/2023

Tema 1. (35 puntos) protestantismoEn el libro titulado “Looking at History Through Mathematics”, Rashevsky propone un modelo que se puede relacionar con el “protestantismo” en el siglo XVI como una reacción y denuncia de abusos impuestos sobre la sociedad de la época.

En un modelo de Rashevsky modificado con la ecuación logística de Verhulst, la población x(t) de individuos en la sociedad para cada año t, con tasas de natalidad b=0.02 y mortalidad d=0.015, cambia según la ecuación:

\frac{\delta}{\delta t}x(t) = b x(t) - d (x(t))^2 x(0)=1

La cantidad de individuos “protestantes” y(t) en la población se incrementa según la ecuación diferencial compuesta de dos términos.

\frac{\delta}{\delta t}y(t) = b y(t) - d (y(t))^2 +r b (x(t)-y(t)) y(0)=0.01

El primer término supone que todas familias de padre y madre “protestantes” tienen hijos que también se identifican como tales.

El segundo término supone que una porción r = 0.1 de jóvenes descendientes de los “conformistas” al meditar sobre la situación actual, los hechos y los argumentos de protesta se convierten a “protestantes”.

a.       Realice el planteamiento del ejercicio usando Runge-Kutta de 2do Orden

b.       Desarrolle tres iteraciones para x(t), y(t) con tamaño de paso h=0.5.

c.       Usando el algoritmo, aproxime la solución entre t=0 a t=200 años, adjunte sus resultados en la evaluación.

d.       Realice una observación sobre el crecimiento de población y(t) a lo largo del tiempo.

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c (10 puntos), literal d (5 puntos)

Referencia: Burden 5.2 Ejercicio 17 p276, Rashevsky, MIT 1968. pp102-110, Protestantismo https://es.wikipedia.org/wiki/Protestantismo. 3Eva_IIT2014_T2 Crecimiento demográfico. http://blog.espol.edu.ec/analisisnumerico/3eva_iit2014_t2-crecimiento-demografico/

La Reforma protestante y Lutero. Academia Play. 27 agosto 2019

 

3Eva_2022PAOI_T3 EDO Modelo de selección híbrida

3ra Evaluación 2022-2023 PAO I. 13/Septiembre/2022

Tema 3. (35 puntos) En genética, el modelo de selección híbrida representa la porción de la población que tiene ciertas características a lo largo del tiempo medido en generaciones (h=1).

Para una población de escarabajos, la rapidez de transferencia que una característica D pasa de una generación a la siguiente está dada por:

\frac{d}{dt}y(t) = k(1-y(t))(a-by(t))

Las constantes a, b y k dependen de las características genéticas estudiadas.

Al inicio del estudio, t=0, se encuentra que la mitad de la población tiene la característica D, y(0)=0.5. El factor k=0.26 considera la trasferencia al combinarse los especímenes “Sin D” y “con D”. Use los valores de a=2 y b=1.

a) Realice el planteamiento del problema de la Ecuación Diferencial Ordinaria usando el método de Runge-Kutta de 4to Orden

b) Desarrolle al menos tres iteraciones usando las expresiones completas.

c) estime la cota de error de la solución.

d) Adjunte el desarrollo completo usando un algoritmo con Python para las próximas 10 generaciones. tabla y gráfica.

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c (5 puntos), literal d (5 puntos), gráfica(5puntos)

Referencias: Larson. Cálculo aplicado, 7ma Ed. Apéndice C, ejemplo 4. https://college.cengage.com/mathematics/larson/calculus_applied/7e/students/appendices/appendix_c04.pdf
Los mecanismos del cambio. https://www.sesbe.org/evosite/evo101/IIIBMechanismsofchange.shtml.html

2Eva_2022PAOI_T2 EDO de circuito RLC con interruptor intermedio

2da Evaluación 2022-2023 PAO I. 30/Agosto/2022

Tema 2. (30 puntos) El circuito de la figura 2a tiene el interruptor en posición cerrada por largo tiempo antes de t=0, con lo que la corriente en el inductor será de 2 Amperios, y(0)=2. Para t<0, el inductor opera como un conductor sin caída de voltaje, el capacitor está cargado a 10V y solo pasaría corriente por la resistencia de 5 Ohm.


En el tiempo t=0, el interruptor se abre de forma instantánea y el circuito cambia al modelo de la figura 2b.


La corriente del inductor y(t) para t≥0 está dada por la ecuación:

\frac{\delta}{\delta t}y(t) + 2 y(t) + 5 \int_{-\infty}^t y(\tau) \delta \tau = 10 \mu(t)

En t=0, luego de abrir el interruptor, los voltajes de la fuente y el capacitor son iguales. La corriente inicial sobre el resistor de 2 A genera un voltaje que se compensa con el voltaje del inductor pero en signo opuesto. Lo que implica que y’(0) = -4

V_{Inductor} = - V_{resistor} y'(0) = -4

Derive la expresión de corrientes y(t) para obtener una ecuación diferencial ordinaria.

a) Realice el planteamiento del problema usando el método de Runge-Kutta de 2do orden para 2da derivada

b) Desarrolle las expresiones para al menos tres iteraciones usando h=0.01

c) Estime el valor del error.

d) Muestre el resultado con el algoritmo para el intervalo t entre [0,5] segundos

Rúbrica: literal a (5 puntos), literal b (15 puntos), literal c (5 puntos), literal d (5 puntos)

Referencia: Lathi B.P. Green R. Linear Systems and Signals, 3rd Edition. ejemplo 4.13 p364

3Eva_2021PAOII_T2 EDO cadena desenrollando y cayendo

3ra Evaluación 2021-2022 PAO II. 8/Febrero/2022

Tema 2. (30 puntos) Cadena cayendo. Una parte de una cadena de L= 8pies de longitud está enrollada sin apretar alrededor de una clavija en el borde de una plataforma horizontal y la parte restante de la cadena cuelga descansando sobre el borde de la plataforma. Por simplicidad, use g=32 pies/s2.

Suponga que la longitud de la cadena que cuelga es de X0=3 pies, que la cadena pesa 2 lb/pie y que la dirección positiva es hacia abajo.

Comenzando en t=0 segundos, el peso de la cadena que cuelga causa que la cadena sobre la plataforma se desenrolle suavemente y caiga al piso.

Si x(t) denota la longitud de la cadena que cuelga de la mesa al tiempo t=0, entonces v=dx/dt es su velocidad.  V0=0

Cuando se desprecian todas las fuerzas de resistencia se puede demostrar que un modelo matemático que relaciona a v con x está dado por la ecuación mostrada.

\frac{\delta^2 x}{\delta t^2 } - \frac{g}{L} x=0

0≤x≤L

a) Resuelva v(x) usando Runge-Kutta, considere h=0.05

b) Aproxime el tiempo que tarda el resto de la cadena en deslizarse de la plataforma.

c) Estime la velocidad a la cual el extremo de la cadena sale del borde de la plataforma.

Rúbrica: Planteamiento del problema(5 puntos), plantear el método (5 puntos), literal b, iteraciones (10 puntos), valor del tiempo (5 puntos). literal c (5 puntos).

Referencias: Cadena cayendo: Zill Dennis, Ecuaciones Diferenciales 9Ed, Ejercicios 45 p.69 Cadena cayendo. Zayas Martín, Una Física Simplificada (min[30-34]) https://youtu.be/dPn_ggi6zx0?t=1802 ,
Tripulación de barco pierde control de un ancla y provoca accidente.