2Eva_2021PAOII_T2 EDO – Embudos cónicos para llenar botellas

2da Evaluación 2021-2022 PAO II. 25/Enero/2022

Tema 2. (30 puntos) Los embudos cónicos se usan en la industria de bebidas, por ejemplo para el llenado de botellas y tanques de almacenamiento.

Para la sección correspondiente al embudo cónico mostrado en la figura, se tiene como nivel inicial y(0) = 150 mm, diámetro de salida d = 10 mm, la gravedad es 9.8 m/s2, siendo Θ= π/4.

Usando los conceptos de flujo volumétrico q = A Vsalida, siendo A el área transversal del embudo, ∆V=q ∆t , la perdida de volumen ∆V=-(πr2)Δy , que tanΘ = y/r , con la fórmula de Bernoulli  V_{salida} = \sqrt{2gy} .

Al sustituir en las ecuaciones se tiene:

- \pi y(t)^2 \Delta y = \frac{\pi d^2}{4} \sqrt{2g\text{ }y(t)} \Delta t

Reordenando se obtiene la siguiente ecuación diferencial ordinaria.

\frac{\delta y(t)}{\delta t} + \frac{d^2}{4}\sqrt{2 g \text{ }y(t)}\Bigg[\frac{tan \theta}{y(t)} \Bigg]^2 = 0

a) Plantee el la solución para y(t), usando el método de Runge-Kutta de 2do orden

b) Desarrolle al menos 3 iteraciones del método con sus expresiones completas. Considere h = 0.5

c) usando el algoritmo, encuentre el tiempo en que se vacía el embudo.

Nota: Considere revisar las unidades de medida de cada parámetro

Rúbrica: Planteamiento del problema (5 puntos), literal b planteamient con el método de 2do orden (10 puntos), literal b, iteraciones (10 puntos). literal c (5 puntos).

Referencias: Zill Dennis, Ecuaciones Diferenciales 9Ed, Ejercicios 1.3.14 p.29. Embudo. Materiales de laboratorio. https://materialeslaboratorio.com/embudo/

3Eva_2021PAOI_T3 Respuesta a entrada cero en un sistema LTIC

3ra Evaluación 2021-2022 PAO I. 14/Septiembre/2021

Tema 2 (30 puntos) Para un circuito eléctrico mostrado en la figura, conocido también como un sistema LTIC (lineal contínuo invariante en el tiempo), la “respuesta a entrada cero” corresponde al comportamiento de la corriente y(t) cuando no se aplica una señal de entrada x(t) = 0.

La expresión que describe la relación de entrada x(t) y salida y(t) que permite analizar el sistema en un intervalo de tiempo es:

\frac{\delta^2 y(t)}{\delta t^2}+3 \frac{\delta y(t)}{ \delta t}+2 y(t) = \frac{\delta x(t)}{\delta t} =0

Los componentes inductores y capacitores almacenan energía representada como condiciones iniciales y0(t) =0 , y’0(t) =-5

Considere como de interés el intervalo de tiempo entre [0,6] con al menos 60 tramos.

a) Realice el planteamiento para encontrar y(t) con las condiciones dadas, usando el método de Runge-Kutta de 2do orden

b) Desarrolle tres iteraciones con expresiones y valores, mostrando el uso del método anterior.

Referencia: Lathi B.P and Green R.A.(2018). Capítulo 2.1 p151.Linear Systems and Signals Third Edition. Oxford University Press.
http://blog.espol.edu.ec/telg1001/ltic-respuesta-entrada-cero-con-python/

Rúbrica: Planteo de ejercicio para el método requerido (5 puntos), tamaño de paso (5 puntos), iteraciones completas (15 puntos), desarrollo algorítmico, gráfica (5 puntos)

2Eva_2021PAOI_T2 EDO para cultivo de peces

2da Evaluación 2021-2022 PAO I. 31/Agosto/2021

Tema 2 (30 puntos) “La tilapia es un pescado que muestra crecimiento en su consumo” y producción en el país.

La actual situación comercial es estable y sin bajas en el precio.

“Santo Domingo es una provincia con una buena cantidad de piscinas para su cultivo. Aunque lo comercializan al fresco, ya que no tienen el equipo para empacar para exportación.”

Suponga una piscina de cultivo donde no existen depredadores y con alimento suficiente para que los peces no luchen por la comida.

Los peces se capturan a intervalos periódicos descritos por la función h(t) mostrada, con a=0.9 y b=0.75, constantes a > b y t>0 el tiempo en años.

h(t) = a + b \sin (2 \pi t)

Se supone que los peces crecen con un ritmo proporcional a su población, entonces la ecuación diferencial dy/dt modela la población de tilapias en el tiempo y r=1 la tasa neta de crecimiento sin captura. Suponga y(0) =1

\frac{\delta y(t)}{\delta t} = r y(t)-h(t)

a) Realice el planteamiento de la solución usando Runge-Kutta 4to orden, para n=12 meses o tramos.

b) Aproxime considerando h=1/12 y realice 2 pasos usando Runge-Kutta de 2do orden, escriba las expresiones completas para los cálculos.

c) Usando el algoritmo, determine si el negocio de cultivo de tilapia con la estrategia de captura h(t) es sostenible en el tiempo. Recomiende y justifique sus conclusiones observando el comportamiento para al menos 2 años (24 meses).

Rúbrica: Planteamiento del problema (5 puntos), uso del método de 4to orden (10 puntos), iteraciones con método de segundo orden (10 puntos). literal c (5 puntos)

Referencia: El consumo de la tilapia, más económica que la carne, crece en Ecuador. Eluniverso.com. Septiembre 5,2018. https://www.eluniverso.com/noticias/2018/09/05/nota/6938243/consumo-tilapia-mas-economica-que-carne-crece-ecuador/
Como empezar un Cultivo de Peces – Piscicultura – TvAgro por Juan Gonzalo Angel. https://www.youtube.com/watch?v=97qIOpSpXCs

3Eva_2020PAOII_T2 EDO – Concentración de solución en tres tanques

3ra Evaluación 2020-2021 PAO II. 9/Febrero/2021

Tema 2. (30 puntos) Tres tanques perfectamente aislados, completamente llenos con una solución cuya concentración es Ci (0) g/L.

Los tanques están interconectados en serie de tal forma que de añadir solución al primero, se transfiere la misma cantidad por la conexión al segundo y al tercero del cual rebosa hacia afuera del sistema.

El tercer tanque tiene una salida por rebose que mantiene constante el volumen V en cada tanque.

Desde un tiempo t0 = 0, al primer tanque se le añade una solución que tiene una concentración 50 g/L, a razón de 300 L/min.

Considere Ci (0) = 30 g/L y el volumen de cada tanque de 1000 L.
En cada tanque entre lo que recibe y se transfiere al siguiente tanque se obtienen las siguientes ecuaciones:

\frac{dC_1}{dt} = \frac{300}{1000}(50) - 0.3 C_1 \frac{dC_2}{dt} = 0.3C_1- 0.3 C_2 \frac{dC_3}{dt} = 0.3C_2- 0.3 C_3

Determine la concentración en cada tanque durante los 3 primeros minutos de iniciar el experimento usando un método de Runge-Kutta de 2do Orden. (tres iteraciones, estime cota del error)

Rúbrica: Planteo del sistema de ecuaciones en el método (10 puntos), iteraciones (15 puntos), estimar errores (5 puntos).

Referencia: GIE -FRSN-UTN. https://www.frsn.utn.edu.ar/gie/an/mnedo/ejercicios%20propuestos.pdf


3Eva_2020PAOI_T2 Modelo epidemiológico no letal

3ra Evaluación 2020-2021 PAO I. 22/Septiembre/2020

Tema 2. (35 puntos) En 1927, Kermack y McKendrick propusieron un modelo epidemiológico no letal simplificado que divide a la población total en estados de S=Susceptible, I=Infectado, R= Recuperado.

Las personas cambian de estado en un solo sentido S-I-R siguiendo la tasa de infección β y el periodo infeccioso promedio 1/γ; los recuperados adquieren inmunidad. Este modelo permite observar que pequeños aumentos de la tasa de contagio pueden dar lugar a grandes epidemias.

Susceptible Infectado Recuperado
Relación \frac{dS}{dt} = -\beta SI \frac{dI}{dt} = \beta SI - \gamma I \frac{dR}{dt} = \gamma I
Población (t0=0) S(t0)= 1 I(t0) = 0,001 R(t0) = 0

Los valores de población se encuentran en miles, β = 1.4, γ = 1/4.
Suponga que el tiempo se mide en días, h = 1.

a. Plantear la solución del sistema de EDO usando Runge-Kutta de 2do Orden
b. Desarrolle el ejercicio con al menos 3 iteraciones en el tiempo
c. Estimar el error del método aplicado

Rúbrica: conoce la fórmula de RK2 (5 puntos), plantea la fórmula de RK2 al sistema (5 puntos) literal b (20 puntos), literal c (5 puntos).

Referencia: Modelo SIR https://es.wikipedia.org/wiki/Modelo_SIR. Modelaje matemático de epidemias https://es.wikipedia.org/wiki/Modelaje_matem%C3%A1tico_de_epidemias

2Eva_IIT2019_T2 EDO, problema de valor inicial

2da Evaluación II Término 2019-2020. 28/Enero/2020. MATG1013

Tema 2. (25 Puntos) Considere el problema de valor inicial:

y'(t) = f(t,y) = \frac{y}{2t^3}

0 ≤ t ≤ 1
y(0.5) = 1.5

a) Escriba la ecuación recursiva que permite aplicar el método de Taylor de orden de error p=2

b) Aproxime el valor de la solución para t= 0.6, 0.7, 0.8 usando el método de Runge-Kutta de orden 2.

Rúbrica: literal a (10 puntos), literal b, tres iteraciones (15 puntos)

2Eva_IT2019_T2 Péndulo vertical

2da Evaluación I Término 2019-2020. 27/Agosto/2019. MATG1013

Tema 2. (40 Puntos) Suponga que un péndulo tiene 0.6 m de Longitud, se desplaza θ desde la posición vertical de equilibrio.

\frac{d^2\theta }{dt^2}+\frac{g}{L}\sin (\theta)=0 0\lt t \lt 1 g = 9.81 \frac{m}{s^2} \theta(0) = \frac{\pi}{6} \theta '(0) = 0

a. Aproxime la solución de la ecuación para t = [0,1] con pasos de h=0.2
b. Aproxime el valor del error

Rúbrica: literal a, expresiones (20 puntos), valor (10 puntos), literal b (10 puntos)


Referencia: Ejercicio 5.9.8, Burden 9Ed, p338.
2Eva_IT2010_T2 Movimiento angular

Professor of Physics Emeritus Walter Lewin.  Lec 11 | 8.01 Physics I: Classical Mechanics, Fall 1999.

El PÉNDULO SIMPLE NO es como te explicaron | Física y Matemáticas. Mates Mike

3Eva_IIT2018_T3 EDO

3ra Evaluación II Término 2018-2019. 12/Febrero/2018. MATG1013

Tema 3. (40 puntos)

y'' = 2y'-y +xe^{x} -x

0 ≤ x ≤ 2
y(0) = 0
y(2) = -4

a. Use las fórmulas en diferencias finitas para aproximar las soluciones en los nodos indicados con h = 0.25
b. Estime el error

c. Con los puntos calculados, construya el trazador cúbico natural

Rúbrica: Plantear malla (5 puntos), plantear método (5 puntos), desarrollo de la ecuación (10 puntos), planteo del error (5 puntos), obtención del trazador (10 puntos)

2Eva_IIT2018_T2 Kunge Kutta 2do Orden x»

2da Evaluación II Término 2018-2019. 29/Enero/2019. MATG1013

Tema 2. (30 puntos) Se tiene una ecuación diferencial de segundo orden con valores iniciales.

\frac{\delta ^2 x}{\delta t^2} + 5t\frac{\delta x}{\delta t} +(t+7)\sin (\pi t) = 0 0<t<2 x(0)=6,\frac{\delta x}{\delta t}(0) = 1.5

a. Transforme la ecuación en un sistema de primer orden.

b. Use el método de Runge-Kutta de orden 2 (modificado de Euler) con h=0.2 para aproximar x para 3 pasos.

c. Estime el error.

Rúbrica: literal a, aplica el cambio de variables (5 puntos).
literal b, Conoce una fórmula de RK2orden (5 puntos). Plantea la fórmula de RK2 orden al sistema (5 puntos). Realiza al menos 3 pasos (5 puntos).
literal c, conoce las fórmulas del error hasta (5 puntos), calcula el error hasta (5 puntos)

 

2Eva_IT2018_T1 Paracaidista wingsuit

2da Evaluación I Término 2018-2019. 28/Agosto/2018. MATG1013

Tema 1. (25 puntos) Si suponemos que el arrastre es proporcional al cuadrado de la velocidad, se puede modelar la velocidad de un objeto que cae, como un paracaidista, por medio de la ecuación diferencial ordinaria:

\frac{dv}{dt} = g - \frac{cd}{m} v^2

Donde:  http://www.elperiodicodearagon.com/noticias/sociedad/alarma-francia-cinco-muertes-verano-moda-hombres-pajaro-wingsuit_877164.html

  • v es la velocidad en m/s
  • cd es el coeficiente de arrastre de segundo orden Kg/m
  • m es la masa en Kg
  • v = \frac{dy}{dt}
  • y es la distancia que recorre en m

Resuelva para la velocidad y distancia que recorre un objeto de 90 Kg con coeficiente de arrastre de 0.225 kg/m.

Si la velocidad inicial es 0 y la altura inicial es 1 Km, determine la velocidad y posición en cada tiempo, usando un tamano de paso de 2s.

a) Plantee la solución de las ecuaciones para la velocidad y distancia usando el método de Runge-Kutta de segundo orden

b) Realice tres iteraciones

Rúbrica: literal a (15 puntos), literal b (10 puntos)


Referencia: Alarma en Francia … por moda wingsuit. 23 Agosto 2013. www.elperiodicodearagon.com.  http://www.elperiodicodearagon.com/noticias/sociedad/alarma-francia-cinco-muertes-verano-moda-hombres-pajaro-wingsuit_877164.html