1Eva_IT2016_T4_MN Conceptos

1ra Evaluación I Término 2016-2017. 28/junio/2016. ICM02188 Métodos Numéricos

Tema 4. (25 puntos) Responda las siguientes preguntas y justifique la respuesta

a) Si la ‖Tj > 1 , entonces el método de Jacobi no converge

b) Si f ∈ C2[a,b] y p ∈ [a,b], tal que f(p)=0 y f ‘(p)≠0,
entonces existe δ > 0 tal que el método de Newton converge para cualquier
p0 ∈ [p – δ, p + δ]

Rúbrica: literal a) falso  (6 puntos), Justificación (6 puntos), literal b) verdadero (6 puntos), demostración (7 puntos)

3Eva_IIT2009_T3 Sistema de ecuaciones

3ra Evaluación II Término 2009-2010. 23/Febrero/2010. ICM00158

Tema 4. (25 puntos) Enunciar el teorema de convergencia del método iterativo para resolver un sistema de ecuaciones lineales AX=B.

Exponer el método iterativo de Gauss-Seidel para sistemas ecuaciones lineales.

Construir un ejemplo de un sistema de 3×3, cuya diagonal principal sea estrictamente dominante y realizar cuatro iteraciones con el método de Gauss-Seidel, comenzando con el vector cero.

1Eva_IIT2017_T3 Circuito eléctrico

1ra Evaluación II Término 2017-2018. 28/Noviembre/2017. MATG1013

Tema 3. (25 puntos) El sistema de ecuaciones que sigue se generó por medio de aplicar la ley de malla de corriente al circuito de la figura.

\begin{cases} 55 I_1 - 25 I_4 = -200 \\ -37 I_3 - 4 I_4 = -250 \\ -25 I_1 - 4 I_3 + 29 I_4 = 100 \\ I_2 = -10 \end{cases}

a) Use el método de eliminación de Gauss para resolver el sistema

b) Use el método de Jacobi y determine el número de iteraciones para ε=0.01

c) Si el coeficiente 55 se cambia a 54.9, encuentre el error relativo de la aproximación en el literal a.

Rúbrica: Aplicación del método de eliminación de Gauss hasta 10%, Uso del método de Jacobi hasta 5% y determinación del número de iteraciones hasta 5%, Calculo del residuo y cota del error relativo hasta 5%.


A = [[ 55.0, 0,  0, -25],
     [  0  , 0,-37,  -4],
     [-25  , 0, -4,  29],
     [  0  ,  1, 0,   0]]

B = [-200,-250,100,-10]

1Eva_IT2017_T4 Componentes eléctricos

1ra Evaluación I Término 2017-2018. 26/junio/2017. MATG1013

Tema 4. (25puntos)

https://es.dreamstime.com/tablero-electr%C3%B3nico-de-la-tv-image120402048
Tablero electrónico de la TV. Sistema, tarjeta

Un supervisor revisa la producción de tres tipos de componentes eléctricos.

Para ellos se requieren tres clases de materiales como se indica en la tabla adjunta:

Material 1 Material 2 Material 3
Componente 1 5 9 3
Componente 2 7 7 16
Componente 3 9 3 4

a) Si cada semana se dispone de un total de 945 gramos de material 1, 987 gramos de material 2 y 1049 gramos de material 3, ¿Cuántos componentes a lo sumo pueden producirse por semana? (Solo plantear)

b) Si se resuelve con el método de eliminación de Gauss, ¿Cuántas multiplicaciones/divisiones como máximo se realizan?

c) Si se resuelve con el método de Jacobi, encuentre la norma infinita de T y comente sobre la convergencia.

d) Resuelva utilizando el método de Gauss-Seidel, realice tres iteraciones y estime el error de la tercera iteración.

Rúbrica: Planteo hasta 5 puntos, Número de multiplicaciones hasta 5 puntos, ‖T‖ hasta 10 (con filas ordenadas), Iteraciones con Gauss Seidel con la estimación del error hasta 5 puntos.

1Eva_IT2016_T2_MN Organismos patógenos en lago

1ra Evaluación I Término 2016-2017. 28/junio/2016. ICM02188 Métodos Numéricos

Tema 2. (25 puntos) Tres organismos patógenos decaen en forma exponencial en aguas de un lago de acuerdo con el siguiente modelo:

p(t) = A e^{-1.5t} + B e^{-0.3t} + C e^{-0.05t}

Estime la población inicial de cada organismo, dadas las mediciones siguientes:

Tiempo
(horas)
0.5 1 2 3 4
Población
(miles)
6.0 4.4 3.2 2.7 2.2

a) Seleccione los tres primeros puntos y plantee un sistema de 3 ecuaciones.
b) Con el método de Jacobi encuentre la matriz T y comente.
c) Con el método de Gauss Seidel realice tres iteraciones y estime el error.

Rúbrica: Ecuaciones (5 puntos), matriz (5 puntos), comentario (6 puntos), Iteraciones (5 puntos), estimación del error (4 puntos).


Referencia: Cuales son los agentes patógenos del agua.
https://www.ecomol.es/tratamientos/cuales-son-los-agentes-patogenos-del-agua/

 

1Eva_IIT2014_T2 Componentes eléctricos

1ra Evaluación II Término 2014-2015. 9/Diciembre/2013. ICM00158

Tema 2. Un ingeniero eléctrico supervisa la producción de tres tipos de componentes eléctricos.

Para cada componente se se requieren tres clases de materiales:
metal 1, metal 2 y caucho.

Gramos por componente Metal 1 Metal 2 Caucho
Componente 1 15 0.25 1.0
Componente 2 17 0.33 1.2
Componente 3 19 0.42 1.6

Se requieren disponer de componentes con el mismo desempeño, pero de menor tamaño y no se dispone de mas gramos de material que:

materiales = [2.63, 0.0534, 0.202]

a) Plantee el sistema de ecuaciones

b) Utilice el método de eliminación de Gauss para resolver el sistema

c) Encuentre la matriz de Jacobi y comente sobre la convergencia

d) Realice tres iteraciones con Gauss Seidel y estime el error de la segunda iteración.

e) Encuentre el número de condición y comente.


A = np.array([[15, 0.25, 1.0],
              [17, 0.33, 1.2],
              [19, 0.42, 1.6]])
B = np.array([2.63, 0.0534, 0.202])

1Eva_IT2012_T2_MN Modelo Leontief

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM02188 Métodos Numéricos

TEMA 2. (35 puntos) La matriz insumo-producto propuesto por W. Leontief, es un modelo muy importante en Economía.

En ésta matriz se describe la producción de los diferentes sectores económicos y la demanda interna para satisfacer a estos mismos sectores, expresada como una fracción de su producción.

Ejemplo: Suponga que hay tres sectores
A: agricultura,
M: manufactura
S: servicios
y su demanda interna es:

Matriz T Producción
A M S
Demanda A 0.40 0.03 0.02
Interna M 0.06 0.37 0.10
S 0.12 0.15 0.19

Sea T el nombre de esta matriz.

Para los datos propuestos, en la primera columna de la matriz T, el sector A requiere 0.4 de su propia producción, 0.06 del sector M, y 0.12 del sector S, etc.

Sea D el vector de demanda externa de cada sector, y X el vector de la producción total de cada sector, requerida para satisfacer las demandas interna y externa:

D = \begin{pmatrix} 80\\ 140\\200 \end{pmatrix} X = \begin{pmatrix} x_1 \\ x_2\\x3 \end{pmatrix}

en donde x1, x2, x3 representan la producción total de cada sector.

Entonces la ecuación X = TX + D proporciona la producción total X para satisfacer las demandas externa e interna.

a) Formule un método iterativo en notación vectorial para usar la ecuación anterior. Indique cual es el nombre de la matriz T. Analice esta matriz y determine si el método iterativo es convergente.

b) Comience con un vector inicial X = [200, 200, 200]T realice las iteraciones necesarias hasta que la norma de la diferencia entre dos vectores consecutivos sea menor a 1.

Use la norma de fila.


Referencia: Modelo Input-Output. https://es.wikipedia.org/wiki/Modelo_Input-Output, https://es.wikipedia.org/wiki/Wassily_Leontief

T = np.array([[0.40, 0.03, 0.02],
              [0.06, 0.37, 0.10],
              [0.12, 0.15, 0.19]])

D = np.array([80.0, 140.0, 200.0],dtype=float)

Xa = np.array([200.0,200.0,200.0])

1Eva_IT2012_T2 Resolver sistema ecuaciones

1ra Evaluación I Término 2012-2013. 3/Julio/2012. ICM00158

Tema 2. (20%) Dado el siguiente sistema:

\begin{cases}2x_1+2x_2-x_3+x_4=4\\4x_1+3x_2-x_3+2x_4=6\\8x_1+5x_2-3x_3+4x_4=12\\3x_1+ 3x_2-2x_3+2x_4=6\end{cases}

a) Resolver el sistema con un método directo

b) ¿Es posible resolver este sistema con el método iterativo de Jacobi?
Si su respuesta es afirmativa, resuélvalo con una tolerancia de 10-2, con X(0)=0
Si su respuesta es negativa, justifique su conclusión.


A = np.array([[2,2,-1,1],
              [4,3,-1,2],
              [8,5,-3,4],
              [3,3,-2,2]])
B = np.array([[4.0],
              [6],
              [12],
              [6]])
tolera = 0.01

1Eva_IIT2011_T2 Sistema de Ecuaciones, diagonal dominante

1ra Evaluación II Término 2011-2012. 29/Noviembre/2011. ICM00158

Tema 2. Considere el sistema AX = B dado por

\begin{cases} -2x+5y+9z=1\\7x+y+z=6\\-3x+7y-z=-26\end{cases}

Arregle el sistema de tal manera que la diagonal de A sea estrictamente dominante.

a) Calcular el valor de ||T||

b) Escribir el algoritmo de Gauss-Seidel.

c) Dado X(0) = 0, iterar hasta que

\frac{||X^{(k)} - X^{(k-1)}||}{||X^{(k)}||} \lt 10^{-4}

Escriba una tabla de resultados.


A = np.array([[-2, 5, 9],
              [ 7, 1, 1],
              [-3, 7,-1]])
B = np.array([1,6,-26])

1Eva_IIT2010_T2 Sistema ecuaciones, X0 = unos

1ra Evaluación II Término 2010-2011. 7/Diciembre/2010. ICM00158

Tema 2. Considere el sistema AX = B dado por:

\begin {cases} 0.4 x + 1.1 y +3.1z = 7.5 \\ 4x + 0.15y + 0.25z = 4.45\\ 2x+5.6y+3.1z=0.1\end{cases}

De ser posible, manipule el sistema de tal forma que se garantice la convergencia del método de Gauss-Seidel, determine la norma de la matriz T.

Determine la solución con éste método con el vector inicial (1,1,1) y con una tolerancia 10-4.


A = np.array([[0.4, 1.1 ,  3.1],
              [4.0, 0.15, 0.25],
              [2.0, 5.6 , 3.1]])
B = np.array([7.5, 4.45, 0.1])
X = np.array([1.0, 1.0, 1.0])
tolera = 1e-4
iteramax = 100