1Eva_IT2009_T2 Materiales y Productos 3×4

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM00158

Tema 2. (40 puntos). Una empresa produce cuatro productos: P1, P2, P3, P4 usando tres tipos de materiales M1, M2, M3.

Para fabricar cada Kg de cada producto se requiere la siguiente cantidad en Kg, de los tres materiales en la siguiente proporción:

P1 P2 P3 P4
M1 0.2 0.5 0.4 0.2
M2 0.3 0 0.5 0.6
M3 0.4 0.5 0.1 0.2

La cantidad disponible de cada material es: 10, 12, 15 Kg respectivamente, los cuales deben usarse completamente.

a) Plantee un sistema de ecuaciones lineales para determinar la cantidad producida de cada producto. Use el método de Gauss-Jordan para reducir el sistema a la forma escalonada con 1’s en la diagonal hasta donde sea posible. Use dos decimales en los cálculos.

b) Encuentre la variable libre y asígnela un t. Exprese la solución (cantidad de unidades producidas de cada producto) en términos de la variable t y determine su dominio.


Suponiendo que la última variable para P4 sea cero, se inicia con:

A = np.array([[0.2, 0.5, 0.4],
              [0.3, 0.0, 0.5],
              [0.4, 0.5, 0.1]])
B = np.array([10, 12, 15],dtype=float)

1Eva_IT2009_T1 Demanda de un producto alcanza la producción

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM00158 y ICM02188 Métodos Numéricos

Tema 1. (30 puntos) Oferta Demaanda Producto01
Se propone el siguiente modelo para describir la demanda de un producto, en donde t es tiempo en meses:

f(t)=200te0.75t f(t) = 200 t e^{-0.75t}

a) Encuentre el primer valor de t para el cual la demanda alcanza el valor de 80 unidades.
Use el método de Newton para los cálculos.
Elija el valor inicial y muestre los valores intermedios.
Calcule la respuesta con cuatro decimales exactos.

b) Encuentre el valor de t para el cual la demanda alcanza el valor máximo.
Use el método de Newton para los cálculos .
Elija un valor inicial y muestre los valores intermedios.
Calcule la respuesta con cuatro decimales exactos.

1Eva_IT2009_T2_MN Costos de producción y presupuesto

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM02188 Métodos Numéricos

Tema 3. (40 puntos) Una empresa produce por semana tres productos P1, P2 y P3. Cada producto registra costo de materia prima M1 y costo de manufactura M2. El costo en dólares para obtener cada unidad de producto se describe en el siguiente cuadro:

P1 P2 P3
M1 2 4 5
M2 8 1 2

La cantidad de dinero presupuestada por semana es de 400 dólares para la materia prima y 200 dólares para manufactura. Estos valores deben usarse completamente cada semana.

a. Plantee un sistema de ecuaciones lineales para determinar la cantidad producida de cada producto. Use el método de Gauss-Jordan para reducir el sistema a su forma escalonada con 1’s en la diagonal hasta donde sea posible. Use dos decimales en los cálculos.

b. Encuentre la variable libre, asignando un valor t. Exprese  la solución (cantidad de unidades producidas de cada producto) en términos de la variable libre t y determine su dominio.

c. Si x1, x2, x3 representan la cantidad de unidades producidas por semana y se conoce que el costo de transporte por semana está dato por la función

f(t)=2(x1)2+4(x2)2+3(x3)2 f(t) = 2( x_1)^2 + 4(x_2)^2 +3(x_3)^2

encuentre el valor de t para el cual el costo de trasporte semanal es mínimo. Con éste valor, indique cuál debe ser el nivel de producción semanal de los tres productos para minimizar costos.

 

1Eva_IT2009_T3_MN Interpolar contagios por virus

1ra Evaluación I Término 2009-2010. 7/Julio/2009. ICM02188 Métodos Numéricos

Tema 3. (30 puntos) gripecontagio01
Suponga que el siguiente modelo f(x) describe la cantidad de personas que son infectadas por un virus

f(x)=ax+bx2+ce0.1x f(x) = a x + b x^2 + c e^{0.1x}

en donde x es tiempo en días. Los coeficientes a, b, c  deben determinarse.

Se conoce que la cantidad de personas infectadas registradas son:

x 0 5 10
f(x) 1 4 20

a. Plantee un sistema de ecuaciones lineales.

b. Resuelva el sistema para determinar los coeficientes

c. Use el modelo f(x) para determinar el día que la cantidad de personas infectadas por el virus sea 1000. Obtenga la solución con el método de la Bisección.

Previamente encuentre un intervalo de convergencia y obtenga la respuesta con un decimal exacto.

Muestre los valores intermedios calculados hasta llegar a la solución.

1Eva_IIT2008_T3_MN Ganancia en inversión

1ra Evaluación II Término 2008-2009. 9/Diciembre/2008. ICM02188 Métodos NuméricosinversionGanancia01

Tema 3. Se dispone de los datos (x, f(x)), en donde x es un valor de inversión y f(x) es un valor de ganancia, ambos en miles de dólares:

 

inversión ganancia
3.2 5.12
3.8 6.42
4.2 7.25
4.5 6.85

para analizar éste comportamiento se propone usar el siguiente modelo:

f(x)=a1x3+a2x2+a3x+a4 f(x) = a_1 x^3 + a_2 x^2 + a_3 x + a_4

a) Sustituya cada dato (x, f(x)) en el modelo y obtenga un sistema de ecuaciones lineales.

b) Obtenga los coeficientes ai resolviendo el sistema lineal con un método numérico directo.

c) Con el modelo f(x), use el método de la Bisección para calcular cuánto debe invertirse si se desea que la ganancia sea de 6.0 (miles de dólares).
Precisión: dos decimales exactos.


xi = np.array([3.2 , 3.8 , 4.2 , 4.5 ]) 
fi = np.array([5.12, 6.42, 7.25, 6.85])

1Eva_IIT2008_T2_MN Distribuidores de productos

1ra Evaluación II Término 2008-2009. 9/Diciembre/2008. ICM02188 Métodos Numéricos

Tema 2.  Para mejorar la cadena de distribución de un producto, se desea instalar tres nuevos distribuidores X1, X2, X3 en la parte interna de la región. En las cercanías ya existen otros distribuidores: A, B, C, D, E, F, G del mismo producto.

En el gráfico, el valor de los círculos indican el precio de venta del producto que ofrece cada distribuidor. Las líneas muestran los otros distribuidores que están directamente conectados y el costo del transporte.

Determine el precio de venta que deben establecer los distribuidores X1, X2 y X3, de tal manera que sean el promedio de los precios de los distribuidores con los que están directamente conectados, incluyendo el precio del transporte.

a) Plantee un modelo matemático para describir el problema (sistema de ecuaciones lineales)

b) Encuentre la solución con un método numérico directo

1Eva_IIT2008_T1_MN Bacterias contaminantes

1ra Evaluación II Término 2008-2009. 9/Diciembre/2008. ICM02188 Métodos Numéricos

Tema 1. La concentración de bacterias contaminantes c en un lago decrece de acuerdo con la relación:

c=70e1.5t+25e0.075t c= 70 e^{-1.5t} + 25 e^{-0.075t}

Se necesita determinar el tiempo para que la concentración de bacterias sea menor o igual a 9.bacterias Lago 01

a) Encuentre un intervalo en el que exista una raíz de la ecuación

b) Elija un valor inicial del tiempo tal que el método de Newton-Raphson converja a la solución requerida.

c) Calcule la solución con el método de Newton-Raphson con una precisión de 0.001


Referencias: Contaminación del Agua – BrainPOP Español.

1Eva_IIT2008_T3 Bacterias contaminantes

1ra Evaluación II Término 2008-2009. 9/Diciembre/2008. ICM00158

Tema 3. La concentración de bacterias contaminantes c en un lago decrece de acuerdo con la relación:

c=70e1.5t+25e0.075t c= 70 e^{-1.5t} + 25 e^{-0.075t}

Se necesita determinar el tiempo para que la concentración de bacterias se reduzca a 9 unidades o menos.bacterias Lago 01

a) Determine un intervalo de existencia de la raíz de la ecuación. (Grafique)

b) Encuentre un valor de t tal que la convergencia del método de Newton-Raphson este garantizada.

c) Aproxime la raíz con el método de Newton-Raphson, indicando la cota del error.


Referencias: Contaminación del Agua – BrainPOP Español.

1Eva_IIT2008_T2 Indice enfriador de viento

1ra Evaluación II Término 2008-2009. 9/Diciembre/2008. ICM00158

Tema 2. El índice enfriador del viento I es una función que depende de dos factores: La temperatura real T y la velocidad del viento v; es decir I=f(T,v).

La siguiente tabla registra los valores de I recogidos en cierto momento por un investigador en los páramos del Cotopaxi. Por ejemplo, cuando la temperatura real es de 5 grados Celcius y el viento de 20 Km/hora, el índice I = f(5, 20) =1 , que quiere decir que la temperatura que se siente en estas condiciones es de 1 grado, aunque no sea la temperatura real.

T\v  5 10 15 20
5 4 2 2 1
0 -2 -3 -4 -5
-5 -8 -10 -11 -12

Usando interpolación polinomial, estimar la temperatura que sentirá una persona situada en un lugar en el que la temperatura real es de 2 grados y la velocidad del viento es 25 Km/hora.

1Eva_IIT2008_T1 Distribuidores de productos

1ra Evaluación II Término 2008-2009. 9/Diciembre/2008. ICM00158

Tema 1.  En una región se desean instalar tres nuevos distribuidores X1, X2, X3 de un producto. En las cercanías ya existen otros distribuidores: A, B, C, D, E, F, G del mismo producto.

En el gráfico, los círculos indican el precio de venta del producto que ofrece cada distribuidor. Las líneas con los que otros distribuidores están directamente conectados y el costo del transporte.

Determine el precio de venta que deben establecer los distribuidores X1, X2 y X3, de tal manera que sean el promedio de los precios de los distribuidores con los que están directamente conectados, incluyendo el precio del transporte.

a) Plantee un modelo matemático para describir el problema (sistema de ecuaciones lineales)

b) Encuentre la solución con el método de Gauss-Jordan

c) Determine si el método iterativo de Jacobi converge. Realice tres iteraciones y encuentre la norma del error. Vector inicial. vector cero.