2Eva_2021PAOI_T1 Masa transportada por tubo

2da Evaluación 2021-2022 PAO I. 31/Agosto/2021

Tema 1 (30 puntos) La cantidad de masa transportada, M, por un tubo durante cierto periodo de tiempo se calcula con:

M = \int_{t_1}^{t_2} Q(t)c(t) dt

Donde:
M = masa (mg)
t1 = tiempo inicial (min)
t2 = tiempo final (min)
Q(t) = tasa de flujo (m3/min)
c(t) = concentración (mg/m3)

Las representaciones funcionales siguientes definen las variaciones temporales en el flujo y la concentración:

Q(t)=9+4 \cos ^2 (0.4t) c(t)=5e^{-0.5t}+2 e^{-0.15 t}

a) Determine la masa transportada entre t1 = 2 min y t2 = 8 min, usando integración numérica de Simpson 1/3 con al menos 6 tramos.

b) Estime la cota de error para el literal anterior.

c) Recomiende y justifique cómo mejorar el resultado de lo calculado de forma numérica.

Rúbrica: Planteamiento (5 puntos), iteración con expresiones completas (10 puntos), tamaño de paso (5 puntos), cota error (5 puntos), literal c (5 puntos)

Referencia: Chapra ejercicio 22.14 p667. ¿Cómo funciona una refinería? https://youtu.be/tFJ064TLW4E
¿Cómo lo hacen? – Extracción de petróleo – DiscoveryMAX en Español https://youtu.be/ua8u3iSFqsc

2Eva_IIT2019_T4 Integrar con Cuadratura de Gauss

2da Evaluación II Término 2019-2020. 28/Enero/2020. MATG1013

Tema 3. (25 Puntos) Considere la función f con regla de correspondencia:

f(x) = x ln(x)

Se desea aproximar el valor del integral I en el intervalo [1,4]

I = \int_a^b f(x) dx

a) Use el método de Cuadratura de Gauss con 2 términos para aproximar el valor de I en el intervalo [1,4]

Usando el método compuesto de Simpson:

I = I_s - \frac{(b-a)}{180}h^4 f^{(4)} (\xi) ; \xi \in[a,b]

Donde Is es el valor aproximado de I y h la longitud de cada intervalo.

b) Determine el mínimo número de subintervalos que permita alcanzar una tolerancia de 0.0001. NO considere errores de redondeo.

Rúbrica: literal a (10 puntos), literal b (15 puntos)

2Eva_IIT2019_T3 EDP elíptica, placa en (1,1)

2da Evaluación II Término 2019-2020. 28/Enero/2020. MATG1013

Tema 3. (30 Puntos) Para la ecuación diferencial parcial elíptica mostrada:

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{\partial y^2} = \frac{x}{y} + \frac{y}{x}

1 <  x < 2
1 <  y < 2

Y con las siguientes condicines de frontera:

u(x,1)= x \ln (x), u(x,2) = x \ln (4x^{2}),1 \lt x \lt 2 u(1,y)= y \ln(y), u(2,y) = 2y \ln (2y), 1 \lt y \lt 2

Considere los valores hx=hy=0.25

Realice la aproximación numérica para la solución.

Para resolver el sistema de ecuaciones utilice el método de Gauss-Seidel para dos iteraciones.

Rúbrica: Plantear la malla (5 puntos), calcular los bordes (3 puntos), plantear las segundas derivadas (7 puntos), plantear las ecuaciones  (10 puntos), aproximar la solución  (5 puntos)

2Eva_IIT2019_T2 EDO, problema de valor inicial

2da Evaluación II Término 2019-2020. 28/Enero/2020. MATG1013

Tema 2. (25 Puntos) Considere el problema de valor inicial:

y'(t) = f(t,y) = \frac{y}{2t^3}

0 ≤ t ≤ 1
y(0.5) = 1.5

a) Escriba la ecuación recursiva que permite aplicar el método de Taylor de orden de error p=2

b) Aproxime el valor de la solución para t= 0.6, 0.7, 0.8 usando el método de Runge-Kutta de orden 2.

Rúbrica: literal a (10 puntos), literal b, tres iteraciones (15 puntos)

2Eva_IIT2019_T1 Canteras y urbanizaciones

2da Evaluación II Término 2019-2020. 28/Enero/2020. MATG1013

Tema 1. (20 Puntos) En el conflicto presentado entre las urbanizaciones y canteras en vía a la costa, se menciona que se ha afectado al ecosistema al disminuir la vegetación en la zona.

Una forma de observar el cambio en la zona es medir el área ocupada por cada actor.

Para la observación considere que la superficie ocupada por las urbanizaciones y canteras se describe con los siguientes datos de frontera:

Canteras– frontera superior
xi 55 85 195 305 390 780 1170
f(xi) 752 825 886 1130 1086 1391 1219
Canteras- frontera inferior
xi 55 705 705 850 850 1010 1170
f(xi) 260 260 550 741 855 855 1055
Urbanización – frontera superior
xi 720 800 890 890 1170 1220
g(xi) 527 630 630 760 760 533
Urbanización – frontera inferior
xi 720 1220
g(xi) 0 0

Nota: Observe que los tamaños de paso no son todos regulares

Usando el método del trapecio, determine:

a) El área de operación de la cantera

b) El área ocupada por la urbanización

c) ¿Se puede mejorar la precición del cálculo de las áreas, sin quitar o aumentar datos? Justifique su respuesta e indique cómo y dónde.

Rúbrica: literal a (5 puntos), literal b(5 puntos), literal c: cómo (5 puntos), dónde(5 puntos)

Referencia: Google Maps Enero 2019.
Dos bosques cercados por el crecimiento de Guayaquil. 27- Julio-2014.
https://www.eluniverso.com/noticias/2014/07/27/nota/3282036/dos-bosques-cercados-urbe-que-crece
La remediación ambiental en vía a la costa tomará giro legal. 02-Enero-2020.
https://www.expreso.ec/guayaquil/remediacion-ambiental-via-costa-tomara-giro-legal-2518.html

2Eva_IT2019_T3 EDP Elíptica Placa 6×5

2da Evaluación I Término 2019-2020. 27/Agosto/2019. MATG1013

Tema 3. (30 Puntos) Una placa rectangular de plata de 6×5 cm tiene calor que se genera uniformemente en todos los puntos, con una rapidez q = 1.5 cal/cm3 s.

Al representar con x la distancia a lo largo del borde de longitud 6 cm y con y la de 5 cm.

Suponga que la temperatura en los bordes se mantiene como se indica:

u(x,0) = x(6-x) u(x,5)=0 0≤x≤6
u(0,y) = y(5-y) u(6,y)=0 0≤y≤5

Donde el origen se encuentra en una esquina de la placa y los bordes se hayan a lo largo de los ejes positivos x, y.

La temperatura de estado estable u(x,y) satisface la ecuación de Poisson:

\frac{\partial^2 u}{\partial x^2} (x,y)+\frac{\partial ^2 u}{\partial y^2 } (x,y) = -\frac{q}{K}

0≤x≤6
0≤y≤5

Donde K, la conductividad térmica es 1.04 cal/cm deg s.

a. Aproxime la temperatura u(x,y) en los nodos de la malla con hx =2, hy= 2.5

b. Exprese el término del error

Rúbrica: literal a expresiones (10 puntos), valor (10 puntos), literal b (5 puntos)


Referencia: Ejercicio 12.1.8, Burden 9Ed, p724.

2Eva_IT2019_T2 Péndulo vertical

2da Evaluación I Término 2019-2020. 27/Agosto/2019. MATG1013

Tema 2. (40 Puntos) Suponga que un péndulo tiene 0.6 m de Longitud, se desplaza θ desde la posición vertical de equilibrio.

\frac{d^2\theta }{dt^2}+\frac{g}{L}\sin (\theta)=0 0\lt t \lt 1 g = 9.81 \frac{m}{s^2} \theta(0) = \frac{\pi}{6} \theta '(0) = 0

a. Aproxime la solución de la ecuación para t = [0,1] con pasos de h=0.2
b. Aproxime el valor del error

Rúbrica: literal a, expresiones (20 puntos), valor (10 puntos), literal b (10 puntos)


Referencia: Ejercicio 5.9.8, Burden 9Ed, p338.
2Eva_IT2010_T2 Movimiento angular

Professor of Physics Emeritus Walter Lewin.  Lec 11 | 8.01 Physics I: Classical Mechanics, Fall 1999.

El PÉNDULO SIMPLE NO es como te explicaron | Física y Matemáticas. Mates Mike

2Eva_IT2019_T1 Esfuerzo en pulso cardiaco

2da Evaluación I Término 2019-2020. 27/Agosto/2019. MATG1013

Tema 1. (30 Puntos) La conducción eléctrica del corazón se identifica en un electrocardiograma por segmentos de ondas P, R, T.

Mediante un sensor se obtuvo lecturas de un pulso cardiaco y se requiere obtener una medida del esfuerzo mediante el valor Xrms expresado como:

X_{rms} = \sqrt{\frac{1}{t_n-t_0}\int_{t_0}^{t_n}[f(t)]^2dt}
t 0.0 0.04 0.08 0.1 0.11 0.12 0.13 0.16 0.20 0.23 0.25
f(t) 10 18 7 -8 110 -25 9 8 25 9 9

a. Aproxime el valor Xrms usando el integral en todo el intervalo [0,0.25], minimice el error usando preferiblemente métodos de Simpson.

b. Estime la cota de error para el valor Xrms encontrado
Justifique sus respuestas escribiendo todas las expresiones

Rúbrica: literal a, expresiones (16 puntos), valor (8 puntos), literal b (6 puntos)


t  = np.array([0.0,0.04,0.08,0.1,0.11,0.12,0.13,0.16,0.20,0.23,0.25])
ft = np.array([10.0, 18, 7, -8, 110, -25, 9, 8, 25, 9, 9])

Referencia: Valor cuadrático medio, https://es.wikipedia.org/wiki/Media_cuadr%C3%A1tica
Sensor de pulso cardiaco arduino, http://blog.espol.edu.ec/edelros/pulso-cardiaco/

2Eva_IIT2018_T3 EDP

2da Evaluación II Término 2018-2019. 29/Enero/2019. MATG1013

Tema 3. (40 puntos) Resuelva la siguiente ecuación diferencial parcial (EDP) usando un método de diferencias finitas. Considere b = 0

\frac{\partial u}{\partial t} = \frac{\partial ^2 u}{\partial x^2} + b\frac{\partial u}{\partial x} 0<x<1, t>0

condiciones de frontera U(0,t)=0, U(1,t)=1

condiciones de inicio U(x,0)=0, 0≤x≤1

a) Aproxime la solución con h=0.25, realice dos pasos en t

b) estime el error.

Rúbrica: Plantea la malla (5 puntos), Conoce las fórmulas de las derivadas (5 puntos), Plantea la ecuación en los nodos de la malla (5 puntos), plantea las condiciones iniciales y condiciones de borde (5 puntos), Establece el valor de lamda y calcula el tamaño del paso k, (5 puntos) Realiza dos pasos (5 puntos), Conoce las fórmulas del error (5 puntos), calcula el error (5 puntos).

2Eva_IIT2018_T2 Kunge Kutta 2do Orden x»

2da Evaluación II Término 2018-2019. 29/Enero/2019. MATG1013

Tema 2. (30 puntos) Se tiene una ecuación diferencial de segundo orden con valores iniciales.

\frac{\delta ^2 x}{\delta t^2} + 5t\frac{\delta x}{\delta t} +(t+7)\sin (\pi t) = 0 0<t<2 x(0)=6,\frac{\delta x}{\delta t}(0) = 1.5

a. Transforme la ecuación en un sistema de primer orden.

b. Use el método de Runge-Kutta de orden 2 (modificado de Euler) con h=0.2 para aproximar x para 3 pasos.

c. Estime el error.

Rúbrica: literal a, aplica el cambio de variables (5 puntos).
literal b, Conoce una fórmula de RK2orden (5 puntos). Plantea la fórmula de RK2 orden al sistema (5 puntos). Realiza al menos 3 pasos (5 puntos).
literal c, conoce las fórmulas del error hasta (5 puntos), calcula el error hasta (5 puntos)