3Eva_IIT2009_T3 Integral doble

3ra Evaluación II Término 2009-2010. 23/Febrero/2010. ICM00158

Tema 3. (25 puntos) Calcular la siguiente integral, con el algoritmo de la integral doble de Simpson:

\int_R \int x^2 (\sqrt{9 - y^2}) \delta A

Donde R es la región acotada por: x2+y2 =9 .

Usar n=m=4

3Eva_IIT2009_T2 Valor inicial Runge-Kutta 4to orden dy/dx

3ra Evaluación II Término 2009-2010. 23/Febrero/2010. ICM00158

Tema 2. (25 puntos) Resolver el siguiente problema de valor inicial

(1-x^2)y' - xy = x (1-x^2) 0\leq x \leq \frac{1}{2} y(0)=2

Usando el método de Runge-Kutta de cuarto orden:

a. Escriba el algoritmo para la función específica f(x,y)

b. Escriba la tabla de resultados para h=0.1

3Eva_IIT2009_T1 Ladera submarina

3ra Evaluación II Término 2009-2010. 23/Febrero/2010. ICM00158

Tema 1. (25 puntos) Para aproximar la profundidad de una ladera submarina se han hecho mediciones, las cuales relacionan la profundidad de la ladera, expresada en m, con la distancia respecto a la orilla, expresada en km.

Ladera submarina

Empleando los datos que se dan a continuación, construya el trazador cúbico natural para aproximar la profundidad de la ladera a 1.5 km respecto a la orilla.

Distancia a orilla 0 1 2 3
Profundidad ladera 1 170 235 320

Escriba el sistema de ecuaciones del cual se obtienen los valores de ci.


distancia = [ 0, 1, 2, 3]
profundidad = [ 1, 170, 235, 320]

Referencias:
EEUU vierte arena en playas de Miami Beach erosionadas por el cambio climático | AFP

https://www.youtube.com/watch?v=BbYVuXT_MEk

3Eva_IT2009_T4 EDO diferencias finitas

3ra Evaluación I Término 2009-2010. 15/Septiembre/2009. ICM00158

Tema 4. (25 puntos) Resuelva la siguiente ecuación diferencial con el método de diferencias finitas, h=0.2

y'' + 2y' -y -2e^x + x - 4 = 0 0 \leq x \leq 1 y(0) = -1, y(1) = e-1

Rúbrica: Determinar algoritmo de diferencia centrada (10 puntos), sistema de ecuaciones (10 puntos), solución numérica (5 puntos)

3Eva_IT2009_T3 Integrar Simpson compuesta

3ra Evaluación I Término 2009-2010. 15/Septiembre/2009. ICM00158

Tema 3. (25 puntos) Aproxime el valor de la siguiente integral con ayuda de la fórmula compuesta de Simpson con n=6

\int_0^1 \frac{\cos (2x)}{x^{1/3}} \delta x

Rúbrica: Integración del polinomio de grado cuatro (10 puntos), integración del residuo con Simpson (10 puntos), Valor aproximado de la integral (5 puntos)

3Eva_IT2009_T2 EDO Taylor Seno(x)

3ra Evaluación I Término 2009-2010. 15/Septiembre/2009. ICM00158

Tema 2. (25 puntos) Resolver la ecuación diferencial usando el método de Taylor con n=2:

xy'+ 2y = \sin (x) \frac{\pi}{2} \leq x \leq \frac{3\pi}{2} y\Big(\frac{\pi}{2} \Big) = 1

a. Establecer el algoritmo correspondiente para la ecuación dada

b. Escribir la tabla de resultados para h = π/10

Rúbrica: Determinación correcta de f(x,y(xi) )(2.5 puntos), establecimiento del algoritmo de Taylor (12.5 puntos), Solución numérica (10 puntos)

3Eva_IT2009_T1 Trazador cúbico fijo

3ra Evaluación I Término 2009-2010. 15/Septiembre/2009. ICM00158

Tema 1.  (25 puntos) Dado los valores de una función, construir el trazador cúbico fijo.

f(0) = 1,
f(0.25) = 1.14012
f(0.5) = 1.32436
f(0.75) = 1.5585

y con las derivadas, f'(0) = 0.5, f'(0.75) = 1.0585

a. Establecer el sistema para determinar los valores de ci

b. Aproximar f(0.15) y f(0.6)

Rúbrica: Sistema de ecuaciones (7.5 puntos), polinómios cúbicos (10 puntos), aproximación correcta de los puntos (7.5 puntos)


datos = [[0, 1],
         [0.25, 1.14012],
         [0.5 , 1.32436],
         [0.75, 1.5585 ]]

2Eva_IT2009_T3_AN Circuito RLC

2da Evaluación I Término 2009-2010. 1/Septiembre/2009. Análisis Numérico

Tema 3. (20 puntos) Determine la corriente I(t) de un circuito «LRC» en serie, cuando L=0.005 Henrios, R = 2 Ohm y C=0.02 Faradios, donde E(t) se regula en el tiempo y es igual a:

E(t)=1000\frac{[[t+1]]}{\sin ^2 (t) +2}

En el instante inicial la corriente I(0) es cero y la ecuación del circuito puede aproximarse por:

L\frac{\delta I}{\delta t} +RI + \frac{1}{C} \int_0^t e^{-t^2} \delta t = E(t) I(0) = 0

Determine la corriente en los instantes π/4 y π/2 utilizando el método de Runge-Kutta de cuarto orden para resolver la ecuación diferencial y Simpson con una parábola para determinar las integrales que se generen.

Rúbrica: Aproximación de I(t) en t = π/4 (10 puntos), aproximación de I(t) en t = π/2 (10 puntos)

2Eva_IT2009_T2_AN EDP hiperbólica

2da Evaluación I Término 2009-2010. 1/Septiembre/2009. Análisis Numérico

Tema 2. (20 puntos) Dada la ecuación hiperbólica

\frac{\partial ^2 u}{\partial t^2} - \frac{\partial ^2 u}{\partial x^2} = 0 0 \lt x \lt 1, t\gt 0 \begin{cases} u(0,t) = u(1,t) = 0 , & t\gt 0 \\ u(x,0) = \sin (2\pi x), & 0 \leq x \leq 1 \\ \frac{\delta u}{\delta t} (x,0) = 2 \pi \sin (2\pi x) , & 0 \leq x \leq 1\end{cases}

Aproximar u(x,t) para t=0.8, con h=k=0.2

Rúbrica: Establecer el método de diferencia centrada y condiciones de frontera (5 puntos), determinar ωi1 (5 puntos), aproximación de u(x,t) en t=0.8 (10 puntos)

2Eva_IT2009_T1_AN Integral doble

2da Evaluación I Término 2009-2010. 1/Septiembre/2009. Análisis Numérico

Tema 1. (20 puntos) Calcular la integral doble usando el método de Simpson con n=m=3
\int_R\int (y^2 + x^3) \delta y \delta x

R = \{ (x,y) , 0\leq x \leq 1, x \leq y \leq 2 x\}

Rúbrica: Integración respecto eje x (10 puntos), Integración respecto eje y (10 puntos)