s1Eva_IT2010_T2_MN Uso de televisores

Ejercicio: 1Eva_IT2010_T2_MN Uso de televisores

Para la función dada:

p(x) =\frac{1}{2.5} \Big(-10 \sin \Big(\frac{12x}{7} \Big) e^{-\frac{24x}{7}} + \frac{48x}{7}e^{-\frac{8x}{7}} + 0.8 \Big)

0≤x≤4

literal a

El enunciado indica encontrar el máximo y luego el mínimo, por lo que la curva bajo análisis es la derivada de la función dp(x)/dx.

Adicionalmente, para encontrar los puntos se requiere usar el método de Newton-Raphson que corresponden a las raíces de dp(x)/dx. La función bajo análisis ahora es la derivada y para el método se usa la derivada: d2p(x)/dx2.

Al usar el computador para las fórmulas, se usa la forma simbólica de la función p(x), para obtener dpx y d2px.

primera derivada: 
-3.13469387755102*x*exp(-8*x/7)
 + 2.74285714285714*exp(-8*x/7) 
+ 13.7142857142857*exp(-24*x/7)*sin(12*x/7) 
- 6.85714285714286*exp(-24*x/7)*cos(12*x/7)
segunda derivada: 
3.58250728862974*x*exp(-8*x/7) 
- 6.26938775510204*exp(-8*x/7) 
- 35.265306122449*exp(-24*x/7)*sin(12*x/7) 
+ 47.0204081632653*exp(-24*x/7)*cos(12*x/7)

La gráfica requiere la evaluación las funciones, que por simplicidad de evaluación, su formas simbólicas se convierten a su forma ‘lambda’.

Con la gráfica se verifica que la raíz de dp(x)/dx (en naranja) pasa por el máximo y mínimo de p(x) (en azul).

que se obtienen con las siguientes instrucciones en Python:

# 1ra Evaluación I Término 2010
# tema 2. encendido tv
# Tarea: aplicar el método de Newton-Raphson
# solo se muestra la función y sus derivadas 1 y 2
import numpy as np
import sympy as sym
import matplotlib.pyplot as plt

# función bajo análisis en forma simbólica
x = sym.Symbol('x')
pxs = (1/2.5)*(-10*sym.sin(12*x/7)*sym.exp(-24*x/7) \
               + (48*x/7)*sym.exp(-8*x/7)+0.8)

# derivadas
dpxs = pxs.diff(x,1)
d2pxs = pxs.diff(x,2)
d2pxs = sym.expand(d2pxs)

# SALIDA
print('primera derivada: ')
print(dpxs)
print('segunda derivada: ')
print(d2pxs)

# conversion a lambda
pxn = sym.utilities.lambdify(x,pxs, 'numpy')
dpxn = sym.utilities.lambdify(x,dpxs, 'numpy')
d2pxn = sym.utilities.lambdify(x,d2pxs, 'numpy')

# observar gráfica
a = 0
b = 4
muestras = 51
tolera = 0.0001

xi = np.linspace(a,b, muestras)
pxi = pxn(xi)
dpxi = dpxn(xi)
d2pxi = d2pxn(xi)

# Gráfica
plt.plot(xi,pxi, label = 'pxi')
plt.plot(xi,dpxi, label = 'dpxi')
plt.plot(xi,d2pxi, label = 'd2pxi')
plt.axhline(0)
plt.legend()
plt.show()

literal b

Usando el método de Newton-Raphson a partir de la primera y segunda derivada según lo planteado, usando x0=0,se tiene:

f(x) = -3.13469387755102 x e^{(-8 x/7)} +2.74285714285714 e^{(-8 x/7)} + 13.7142857142857 e^{(-24 x/7)} \sin\Big(\frac{12x}{7}\Big) - 6.85714285714286 e^{(-24x/7)} \cos\Big(\frac{12x}{7}\Big) f'(x) = 3.58250728862974 x e^{(- 8 x/7)} - 6.26938775510204 e^{(- 8 x/7)} - 35.265306122449 e^{(-24x/7)} \sin \Big(\frac{12x}{7}\Big) + 47.0204081632653 e^{(-24x/7)} \cos\Big(\frac{12x}{7}\Big)

itera = 0, x0 = 0

f(0) = -3.13469387755102 (0) e^{(-8 (0)/7)} +2.74285714285714 e^{(-8 (0)/7)} + 13.7142857142857 e^{(-24 (0)/7)} \sin\Big(\frac{12(0)}{7}\Big) - 6.85714285714286 e^{(-24(0)/7)} \cos\Big(\frac{12(0)}{7}\Big) = -4.1143 f'(0) = 3.58250728862974 (0) e^{(- 8 (0)/7)} - 6.26938775510204 e^{(- 8(0)/7)} - 35.265306122449 e^{(-24(0)/7)} \sin \Big(\frac{12(0)}{7}\Big) + 47.0204081632653 e^{(-24(0)/7)} \cos\Big(\frac{12(0)}{7}\Big) = 40.751 x_1 = 0 - \frac{-4.1143}{40.751} =0.101 error = | 0.101-0 |=0.101

itera = 1

f(0.101) = -3.13469387755102 (0.101) e^{(-8 (0.101)/7)} +2.74285714285714 e^{(-8 (0.101)/7)} + 13.7142857142857 e^{(-24 (0.101)/7)} \sin\Big(\frac{12(0.101)}{7}\Big) - 6.85714285714286 e^{(-24(0.101)/7)} \cos\Big(\frac{12(0.101)}{7}\Big) = -0.9456 f'(0.101) = 3.58250728862974 (0.101) e^{(- 8 (0.101)/7)} - 6.26938775510204 e^{(- 8 (0.101)/7)} - 35.265306122449 e^{(-24(0.101)/7)} \sin \Big(\frac{12(0.101)}{7}\Big) + 47.0204081632653 e^{(-24(0.101)/7)} \cos\Big(\frac{12(0.101)}{7}\Big) =23.2054 x_2 = 0.101 - \frac{-0.9456}{23.2054} =0.1417 error = | 0.1417-0.101 |=0.0407

itera = 2

f(0.1417) = -3.13469387755102 (0.1417) e^{(-8 (0.1417)/7)} +2.74285714285714 e^{(-8 (0.1417)/7)} + 13.7142857142857 e^{(-24 (0.1417)/7)} \sin\Big(\frac{12(0.1417)}{7}\Big) - 6.85714285714286 e^{(-24(0.1417)/7)} \cos\Big(\frac{12(0.1417)}{7}\Big) = -0.11005 f'(0.1417) = 3.58250728862974 (0.1417) e^{(- 8 (0.1417)/7)} - 6.26938775510204 e^{(- 8 (0.1417)/7)} - 35.265306122449 e^{(-24(0.1417)/7)} \sin \Big(\frac{12(0.1417)}{7}\Big) + 47.0204081632653 e^{(-24(0.1417)/7)} \cos\Big(\frac{12(0.1417)}{7}\Big) = 0.17957 x_3 = 0.1417 - \frac{-0.11005}{0.17957} =0.14784 error = | 0.14784- 0.1417 |=0.0061287

se observa que el error disminuye en cada iteración, por lo que el método converge.

Se continúan las operaciones con el algoritmo obteniendo:

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 0.     -4.1143 40.751   0.101   0.101 ]
1 [ 0.101  -0.9456 23.2054  0.1417  0.0407]
2 [ 1.4171e-01 -1.1005e-01  1.7957e+01  1.4784e-01  6.1287e-03]
3 [ 1.4784e-01 -2.1916e-03  1.7245e+01  1.4797e-01  1.2708e-04]
4 [ 1.4797e-01 -9.2531e-07  1.7231e+01  1.4797e-01  5.3701e-08]
raíz en:  0.1479664890264113

literal c

la otra raíz se encuentra con x0=1

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 1.      0.3471 -2.207   1.1573  0.1573]
1 [ 1.1573  0.0539 -1.5338  1.1924  0.0352]
2 [ 1.1924  0.0024 -1.397   1.1941  0.0017]
3 [ 1.1941e+00  5.7065e-06 -1.3904e+00  1.1942e+00  4.1041e-06]
raíz en:  1.1941511721360376

Instrucciones en Python

# 1Eva_IT2010_T2_MN Uso de televisores

import numpy as np
import matplotlib.pyplot as plt

def newton_raphson(fx,dfx,xi, tolera, iteramax=100, vertabla=False, precision=4):
    '''
    funciónx y fxderiva en forma numérica lambda
    xi es el punto inicial de búsqueda
    '''
    itera=0
    tramo = abs(2*tolera)
    if vertabla==True:
        print('i', ['xi','fi','dfi', 'xnuevo', 'tramo'])
        np.set_printoptions(precision)
    while (tramo>=tolera and itera<iteramax):
        fi = fx(xi)
        dfi = dfx(xi)
        xnuevo = xi - fi/dfi
        tramo = abs(xnuevo-xi)
        if vertabla==True:
            print(itera,np.array([xi,fi,dfi,xnuevo,tramo]))
        xi = xnuevo
        itera = itera + 1
    if itera>=iteramax:
        xi = np.nan
        print('itera: ',itera, 'No converge,se alcanzó el máximo de iteraciones')
    return(xi)

# INGRESO
fx  = lambda x: -3.13469387755102*x*np.exp(-8*x/7) \
      + 2.74285714285714*np.exp(-8*x/7) \
      + 13.7142857142857*np.exp(-24*x/7)*np.sin(12*x/7) \
      - 6.85714285714286*np.exp(-24*x/7)*np.cos(12*x/7)
dfx = lambda x: (3.58250728862974*x - 6.26938775510204 \
                 - 35.265306122449*np.exp(-16*x/7)*np.sin(12*x/7) \
                 + 47.0204081632653*np.exp(-16*x/7)*np.cos(12*x/7))*np.exp(-8*x/7)

x0 = 0.5
tolera = 0.0001

# PROCEDIMIENTO
respuesta = newton_raphson(fx,dfx,x0, tolera, vertabla=True)
# SALIDA
print('raíz en: ', respuesta)

s1Eva_IT2010_T1_MN Demanda y producción sin,log

Ejercicio: 1Eva_IT2010_T1_MN Demanda y producción sin,log

Desarrollo Analítico

Para la demanda, el intervalo de existencia es [0,3]

demanda(t) = sin(t)

Para la oferta, el intervalo de existencia inicia en 1, limitado por la demanda [1,3]

oferta(t) = ln(t)

la oferta satisface la demanda cuando ambas son iguales

demanda(t) = oferta(t) sin(t) = ln(t)

por lo que el tiempo t se encuentra con algún método para determinar la raíz de:

sin(t) - ln(t) = 0 f(t) = sin(t) - ln(t)

Observe que las curvas de oferta y demanda se interceptan en el mismo punto en el eje x que la función f(t).

Para encontrar el valor de intersección de f(t) se propone usar el método de la bisección, en el intervalo [1,3]

itera =  0

a = 1, b =3

c=\frac{1+3}{2} = 2 f(1) = sin(1) - ln(1) = 0.8415 f(3) = sin(3) - ln(3) =-0.9575 f(2) = sin(2) - ln(2) =0.2162

cambio de signo a la derecha

a =c = 2 , b = 3 tramo = |3-2| =1

itera =  1

a = 2, b =3

c=\frac{2+3}{2} = 2.5 f(2) = 0.2162 f(3) =-0.9575 f(2.5) = sin(2.5) - ln(2.5) = -0.3178

cambio de signo a la izquierda

a= 2 , b = c = 2.5 tramo = |2.5-2| = 0.5

itera =  2

a = 2, b =2.5

c=\frac{2+2.5}{2} = 2.25 f(2) = 0.2162 f(2.5) = -0.3178 f(2.25) = sin(2.25) - ln(2.25) = -0.3178

cambio de signo a la izquierda

a= 2 , b = c = 2.25 tramo = |2.25-2| = 0.25

El resto de las iteraciones se continúan con el algoritmo,

encontrando la raíz en 2.219 usando tolerancia de 0.001


Algoritmo en Python

Desarrollo con el método de la Bisección usando el algoritmo:

método de Bisección
i ['a', 'c', 'b'] ['f(a)', 'f(c)', 'f(b)']
   tramo
0 [1, 2.0, 3] [ 0.8415 -0.9575  0.2162]
   1.0
1 [2.0, 2.5, 3] [ 0.2162 -0.9575 -0.3178]
   0.5
2 [2.0, 2.25, 2.5] [ 0.2162 -0.3178 -0.0329]
   0.25
3 [2.0, 2.125, 2.25] [ 0.2162 -0.0329  0.0965]
   0.125
4 [2.125, 2.1875, 2.25] [ 0.0965 -0.0329  0.033 ]
   0.0625
5 [2.1875, 2.21875, 2.25] [ 0.033  -0.0329  0.0004]
   0.03125
6 [2.21875, 2.234375, 2.25] [ 0.0004 -0.0329 -0.0162]
   0.015625
7 [2.21875, 2.2265625, 2.234375] [ 0.0004 -0.0162 -0.0079]
   0.0078125
8 [2.21875, 2.22265625, 2.2265625] [ 0.0004 -0.0079 -0.0037]
   0.00390625
9 [2.21875, 2.220703125, 2.22265625] [ 0.0004 -0.0037 -0.0017]
   0.001953125
10 [2.21875, 2.2197265625, 2.220703125] [ 0.0004 -0.0017 -0.0007]
   0.0009765625
raíz en:  2.2197265625

Instrucciones en Python

# 1Eva_IT2010_T1_MN Demanda y producción sin,log
import numpy as np
import matplotlib.pyplot as plt

def biseccion(fx,a,b,tolera,iteramax = 20, vertabla=False, precision=4):
    '''
    Algoritmo de Bisección
    Los valores de [a,b] son seleccionados
    desde la gráfica de la función
    error = tolera
    '''
    fa = fx(a)
    fb = fx(b)

    itera = 0
    tramo = np.abs(b-a)
    if vertabla==True:
        print('método de Bisección')
        print('i', ['a','c','b'],[ 'f(a)', 'f(c)','f(b)'])
        print('  ','tramo')
        np.set_printoptions(precision)
    while (tramo>=tolera and itera<=iteramax):
        c = (a+b)/2
        fc = fx(c)
        cambia = np.sign(fa)*np.sign(fc)
        if vertabla==True:
            print(itera,[a,c,b],np.array([fa,fb,fc]))
        if (cambia<0):
            b = c
            fb = fc
        else:
            a = c
            fa = fc
        tramo = np.abs(b-a)
        if vertabla==True:
            print('  ',tramo)
        itera = itera + 1
    respuesta = c
    # Valida respuesta
    if (itera>=iteramax):
        respuesta = np.nan
    return(respuesta)

# INGRESO
fx  = lambda t: np.sin(t) - np.log(t)

a = 1
b = 3
tolera = 0.001

# PROCEDIMIENTO
respuesta = biseccion(fx,a,b,tolera,vertabla=True)
# SALIDA
print('raíz en: ', respuesta)

# GRAFICA
ad = 0
bd = 3
# intervalo oferta
# considerando que no existe oferta negativa
ao = 1
bo = 3
muestras = 21

demanda = lambda t: np.sin(t)
oferta = lambda t: np.log(t)
f = lambda t: demanda(t)-oferta(t)

# PROCEDIMIENTO
tid = np.linspace(ad,bd,muestras)
demandai = demanda(tid)

tio = np.linspace(ao,bo,muestras)
ofertai = oferta(tio)

fi = f(tio)

# SALIDA
plt.plot(tid,demandai, label='demanda')
plt.plot(tio,ofertai, label ='oferta')
plt.plot(tio,fi,label='f(t)= demanda-oferta')
plt.axhline(0,color='black')
plt.axvline(2.2185, color = 'magenta')
plt.xlabel('tiempo')
plt.ylabel('unidades')
plt.legend()
plt.grid()
plt.show()

s3Eva_IT2009_T3 Integrar Simpson compuesta

Ejercicio: 3Eva_IT2009_T3 Integrar Simpson compuesta

La fórmula a integrar es:

\int_0^1 \frac{\cos (2x)}{x^{1/3}} \delta x

Que tiene la forma:

da como resultado:

el área bajo la curva es:  0.879822622256

Algoritmo en Python

# 3Eva_IT2009_T3 Integrar Simpson compuesta
import numpy as np
import matplotlib.pyplot as plt

funcionx = lambda x: np.cos(2*x)/(x**(1/3))

# INGRESO
a = 0.00001
b = 1
tramos = 10000

# PROCEDIMIENTO
h = (b-a)/tramos
x = a
area = 0
for i in range(0,tramos,2):
    deltaA = (h/3)*(funcionx(x)+4*funcionx(x+h)+funcionx(x+2*h))
    area = area + deltaA
    x = x + 2*h
    
# para la gráfica
xi = np.linspace(a,b,tramos+1)
fxi = funcionx(xi)

print('el área bajo la curva es: ', area)

# Gráfica
plt.plot(xi,fxi)
plt.title('Funcion a integrar')
plt.grid()
plt.xlabel('x')
plt.show()

Tarea: convertir a función el cálculo de Simpson

s1Eva_IT2009_T2 Materiales y Productos 3×4

Ejercicio: 1Eva_IT2009_T2 Materiales y Productos 3×4

Con los datos de la tabla se plantean las ecuaciones:

P1 P2 P3 P4
M1 0.2 0.5 0.4 0.2
M2 0.3 0 0.5 0.6
M3 0.4 0.5 0.1 0.2

La cantidad disponible de cada material es: 10, 12, 15 Kg respectivamente, los cuales deben usarse completamente.

1. Plantear el sistema de ecuaciones

0.2 x_0 + 0.5 x_1 + 0.4 x_2 + 0.2 x_3 = 10 0.3 x_0 + 0 x_1 + 0.5 x_2 + 0.6 x_3 = 12 0.4 x_0 + 0.5 x_1 + 0.1 x_2 + 0.2 x_3 = 15

Observe que hay más incógnitas que ecuaciones.

Para equiparar las ecuaciones con el número de incógnitas, podríamos suponer que uno de los productos NO se fabricará. por ejemplo el producto x3 que podría hacerse igual a cero. Supone que la variable libre es x3 .

Para mantener la forma de las ecuaciones para otros valores de x3, se pasa la variable y su coeficiente a la derecha.

\begin{cases} 0.2 x_0 + 0.5 x_1 + 0.4 x_2 = 10 - 0.2 x_3 \\ 0.3 x_0 + 0 x_1 + 0.5 x_2 = 12 - 0.6 x_3 \\ 0.4 x_0 + 0.5 x_1 + 0.1 x_2 = 15 - 0.2 x_3 \end{cases}

Para analizar el ejercicio, se supondrá que el valor de x3 = 0, lo que permite usar el modelo del problema como A.X=B .En caso de que x3 sea diferente de cero,  el vector B modifica, y se puede proceder con el sistema de ecuaciones.

2. Convertir a la forma matricial AX = B

Siendo así, suponiendo que x3 = 0, el ejercicio se puede desarrollar usando:

\begin{pmatrix} 0.2 && 0.5 &&0.4 &&10 \\ 0.3 && 0. && 0.5 && 12.\\ 0.4 && 0.5 && 0.1 && 15. \end{pmatrix}

que de debe pivotear por filas antes de aplicar cualquier método de solución, primero se intercambian la primera y última filas para que el primer valor de la diagonal sea el mayor en la columna.

\begin{pmatrix} 0.4 && 0.5 && 0.1 && 15. \\ 0.3 && 0. && 0.5 && 12. \\0.2 && 0.5 &&0.4 &&10 \end{pmatrix}

luego se repite el proceso a partir de la diagonal en la fila segunda, columna segunda, que al tener un valor de 5  en la tercera fila que es mayor que 0, se intercambia la fila segunda con la tercera

\begin{pmatrix} 0.4 && 0.5 && 0.1 && 15. \\0.2 && 0.5 &&0.4 &&10 \\ 0.3 && 0. && 0.5 && 12. \end{pmatrix}

Para el proceso de eliminación hacia adelante se tiene:

para pivote[0,0] = 0.4,

fila = 0 vs fila 1:
pivote = 0.4, factor = 0.2/0.4 = 0.5

\begin{pmatrix} 0.4 && 0.5 && 0.1 && 15. \\0 && 0.25 &&0.35 &&2.5 \\ 0.3 && 0. && 0.5 && 12. \end{pmatrix}

fila = 0 vs fila 2:
pivote = 0.4, factor = 0.3/0.4 = 0.75

\begin{pmatrix} 0.4 && 0.5 && 0.1 && 15. \\0 && 0.25 &&0.35 &&2.5 \\ 0 && -0.375 && 0.425 && 0.75 \end{pmatrix}

y luego para pivote [1,1]

fila = 1 vs fila 2:

pivote = 0.25, factor =-0.375/0.25 = -1.5

\begin{pmatrix} 0.4 && 0.5 && 0.1 && 15. \\0 && 0.25 &&0.35 &&2.5 \\ 0 && 0. && 0.95 && 4.5 \end{pmatrix}

Para eliminación hacia atrás los factores serán:

fila 2 pivote: 0.95
factor: 0.368421052631579 para fila: 1
factor: 0.10526315789473685 para fila: 0

\begin{pmatrix} 0.4 && 0.5 && 0 && 14.52631579 \\0 && 0.25 &&0 &&0.84210526 \\ 0 && 0. && 0.95 && 4.5 \end{pmatrix}

fila 1 pivote: 0.25
factor: 2.0 para fila: 0

\begin{pmatrix} 0.4 && 0 && 0 && 12.84210526 \\0 && 0.25 &&0 &&0.84210526 \\ 0 && 0. && 0.95 && 4.5 \end{pmatrix}

lo que da como resultado:

\begin{pmatrix} 1 && 0 && 0 && 32.10526316 \\0 && 1 &&0 &&3.36842105 \\ 0 && 0 && 1 && 4.73684211 \end{pmatrix}

que da como solución:

x= [32.10526316, 3.36842105 , 4.73684211]

Algoritmo en Python

Para el algoritmo se puede empezar con:

A = np.array([[0.2, 0.5, 0.4],
              [0.3, 0.0, 0.5],
              [0.4, 0.5, 0.1]])
B = np.array([10, 12, 15],dtype=float)

que luego armar el algoritmo y su ejecución, obtendría una solución semejante:

Matriz aumentada
[[ 0.2  0.5  0.4 10. ]
 [ 0.3  0.   0.5 12. ]
 [ 0.4  0.5  0.1 15. ]]
Pivoteo parcial:
  1 intercambiar filas:  0 y 2
  2 intercambiar filas:  1 y 2
[[ 0.4  0.5  0.1 15. ]
 [ 0.2  0.5  0.4 10. ]
 [ 0.3  0.   0.5 12. ]]
Elimina hacia adelante:
 fila 0 pivote:  0.4
   factor:  0.5  para fila:  1
   factor:  0.7499999999999999  para fila:  2
 fila 1 pivote:  0.25
   factor:  -1.4999999999999998  para fila:  2
 fila 2 pivote:  0.95
[[ 0.4   0.5   0.1  15.  ]
 [ 0.    0.25  0.35  2.5 ]
 [ 0.    0.    0.95  4.5 ]]
Elimina hacia Atras:
 fila 2 pivote:  0.95
   factor:  0.368421052631579  para fila:  1
   factor:  0.10526315789473685  para fila:  0
 fila 1 pivote:  0.25
   factor:  2.0  para fila:  0
 fila 0 pivote:  0.4
[[ 1.          0.          0.         32.10526316]
 [ 0.          1.          0.          3.36842105]
 [ 0.          0.          1.          4.73684211]]
solución X: 
[32.10526316  3.36842105  4.73684211]
>>>

Instrucciones en Python

#1Eva_IT2009_T2 Materiales y Productos 3×4
# Método de Gauss-Jordan
# Solución a Sistemas de Ecuaciones
# de la forma A.X=B

import numpy as np

def pivoteafila(A,B,vertabla=False):
    '''
    Pivotea parcial por filas
    Si hay ceros en diagonal es matriz singular,
    Tarea: Revisar si diagonal tiene ceros
    '''
    A = np.array(A,dtype=float)
    B = np.array(B,dtype=float)
    # Matriz aumentada
    nB = len(np.shape(B))
    if nB == 1:
        B = np.transpose([B])
    AB  = np.concatenate((A,B),axis=1)
    
    if vertabla==True:
        print('Matriz aumentada')
        print(AB)
        print('Pivoteo parcial:')
    
    # Pivoteo por filas AB
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    
    # Para cada fila en AB
    pivoteado = 0
    for i in range(0,n-1,1):
        # columna desde diagonal i en adelante
        columna = np.abs(AB[i:,i])
        dondemax = np.argmax(columna)
        
        # dondemax no es en diagonal
        if (dondemax != 0):
            # intercambia filas
            temporal = np.copy(AB[i,:])
            AB[i,:] = AB[dondemax+i,:]
            AB[dondemax+i,:] = temporal

            pivoteado = pivoteado + 1
            if vertabla==True:
                print(' ',pivoteado, 'intercambiar filas: ',i,'y', dondemax+i)
                
    if vertabla==True:
        if pivoteado==0:
            print('  Pivoteo por filas NO requerido')
        else:
            print(AB)
    return(AB)

def gauss_eliminaAdelante(AB, vertabla=False,lu=False,casicero = 1e-15):
    ''' Gauss elimina hacia adelante, a partir de,
    matriz aumentada y pivoteada.
    Para respuesta en forma A=L.U usar lu=True entrega[AB,L,U]
    '''
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    L = np.identity(n,dtype=float) # Inicializa L
    if vertabla==True:
        print('Elimina hacia adelante:')
    for i in range(0,n,1):
        pivote = AB[i,i]
        adelante = i+1
        if vertabla==True:
            print(' fila',i,'pivote: ', pivote)
        for k in range(adelante,n,1):
            if (np.abs(pivote)>=casicero):
                factor = AB[k,i]/pivote
                AB[k,:] = AB[k,:] - factor*AB[i,:]

                L[k,i] = factor # llena L
                
                if vertabla==True:
                    print('   factor: ',factor,' para fila: ',k)
                print(AB)
            else:
                print('  pivote:', pivote,'en fila:',i,
                      'genera division para cero')
    respuesta = AB
    if vertabla==True:
        print(AB)
    if lu==True:
        U = AB[:,:n-1]
        respuesta = [AB,L,U]
    return(respuesta)

def gauss_eliminaAtras(AB, vertabla=False, precision=5, casicero = 1e-15):
    ''' Gauss-Jordan elimina hacia atras
    Requiere la matriz triangular inferior
    Tarea: Verificar que sea triangular inferior
    '''
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    
    ultfila = n-1
    ultcolumna = m-1
    if vertabla==True:
        print('Elimina hacia Atras:')
        
    for i in range(ultfila,0-1,-1):
        pivote = AB[i,i]
        atras = i-1  # arriba de la fila i
        if vertabla==True:
            print(' fila',i,'pivote: ', pivote)
            
        for k in range(atras,0-1,-1):
            if (np.abs(AB[k,i])>=casicero):
                factor = AB[k,i]/pivote
                AB[k,:] = AB[k,:] - factor*AB[i,:]
                
                if vertabla==True:
                    print('   factor: ',factor,' para fila: ',k)
            else:
                print('  pivote:', pivote,'en fila:',i,
                      'genera division para cero')
 
        AB[i,:] = AB[i,:]/AB[i,i] # diagonal a unos
    X = np.copy(AB[:,ultcolumna])
    
    if vertabla==True:
        print(AB)
    return(X)

# PROGRAMA ------------------------
# INGRESO
A = np.array([[0.2, 0.5, 0.4],
              [0.3, 0.0, 0.5],
              [0.4, 0.5, 0.1]])
B = np.array([10, 12, 15],dtype=float)

# PROCEDIMIENTO
AB = pivoteafila(A,B,vertabla=True)

AB = gauss_eliminaAdelante(AB,vertabla=True)

X = gauss_eliminaAtras(AB,vertabla=True)

# SALIDA
print('solución X: ')
print(X)

Encontrada la solución, modifique el algoritmo para calcular B en función de x3, pregunte el valor al inicio, y vuelva a calcular.

x3 = float(input('cantidad a producir de cuarto producto: ')

Observe el rango para x3, por ejemplo que debe ser mayor o igual que cero, pues no hay producción negativa. De producir solamente ése un producto, el valor máximo de unidades a obtener no superaría lo posible con la cantidad de materiales disponible.

Ejemplo:

x3 = 1
B3 = [0.2,0.6,0.2]
Bnuevo = B - x3*B3

>>> Bnuevo
array([  9.8, 11.4,  14.8])

Y se vuelve a generar el sistema A.X=Bnuevo

Observación: Algunos productos se fabrican por unidades, no necesariamente por peso o volumen. ¿comentarios al respecto?

 

s1Eva_IT2009_T1 Demanda de un producto alcanza la producción

Ejercicio: 1Eva_IT2009_T1 Demanda de un producto alcanza la producción

Desarrollo analítico

– igualar la ecuación al valor buscado, 80

200 t e^{-0.75t} = 80

– forma estándar de la ecuación para el método f(x) = 0:

f(t) = 200 t e^{-0.75t} - 80

– derivada de la ecuación

f'(t) = 200 e^{-0.75t} + 200 t (-0.75) e^{-0.75t} f'(t) = 200 e^{-0.75t}(1-0.75t)

– fórmula del método de Newton-Raphson

t_{i+1} = t_i - \frac{f(t)}{f'(t)}

– Punto inicial. Como la variable es t, tiempo, el rango de análisis es t>0
El valor inicial de búsqueda se selecciona t0 = 1

iteración 0:

f(1) = 200 (1) e^{-0.75(1)} - 80 =14.4733 f'(1) = 200 e^{-0.75(1)}(1-0.75(1)) = 23.6183 t_{1} = 1 - \frac{14.4733}{23.6183} =0.3872 error = |0.3872 - 1| = 0.6128

iteración 1:

f(0.3872)= 200 (0.3872) e^{-0.75(0.3872)} - 80 = -22.0776 f'(0.3872 )= 200 e^{-0.75(0.3872)}(1-0.75(0.3872)) = 106.1511 t_{2} = 0.3872 - \frac{-22.0776}{106.1511} = 0.5952 error = |0.5952- 0.3872| = 0.208

iteración 2:

f(0.5952)=200 (0.5952) e^{-0.75(0.5952)} - 80 = -3.8242 f'(0.5952) = 200 e^{-0.75(0.5952)}(1-0.75(0.5952)) = 70.855 t_{3} = 0.5952 - \frac{-3.8242}{70.855} = 0.64916

error = |0.64916-0.5952| = 0.053972

tabla de iteraciones

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 1.     14.4733 23.6183  0.3872  0.6128]
1 [  0.3872 -22.0776 106.1511   0.5952   0.208 ]
2 [ 5.9518e-01 -3.8242e+00  7.0855e+01  6.4916e-01  5.3972e-02]
3 [ 6.4916e-01 -2.1246e-01  6.3069e+01  6.5252e-01  3.3686e-03]
4 [ 6.5252e-01 -7.9031e-04  6.2600e+01  6.5254e-01  1.2625e-05]
5 [ 6.5254e-01 -1.1069e-08  6.2599e+01  6.5254e-01  1.7683e-10]
raíz en:  0.6525363029069534

Se obtiene el valor de la raíz con 5 iteraciones, y un error de 1.2625e-05


Desarrollo con Python

# 1Eva_IT2009_T1 Demanda de un producto alcanza la producción

import numpy as np
import matplotlib.pyplot as plt

def newton_raphson(fx,dfx,xi, tolera, iteramax=100, vertabla=False, precision=4):
    '''
    fx y dfx en forma numérica lambda
    xi es el punto inicial de búsqueda
    '''
    itera=0
    tramo = abs(2*tolera)
    if vertabla==True:
        print('método de Newton-Raphson')
        print('i', ['xi','fi','dfi', 'xnuevo', 'tramo'])
        np.set_printoptions(precision)
    while (tramo>=tolera):
        fi = fx(xi)
        dfi = dfx(xi)
        xnuevo = xi - fi/dfi
        tramo = abs(xnuevo-xi)
        if vertabla==True:
            print(itera,np.array([xi,fi,dfi,xnuevo,tramo]))
        xi = xnuevo
        itera = itera + 1

    if itera>=iteramax:
        xi = np.nan
        print('itera: ',itera, 'No converge,se alcanzó el máximo de iteraciones')

    return(xi)

# INGRESO
fx  = lambda t: 200*t*np.exp(-0.75*t) - 80
dfx = lambda t: 200*np.exp(-0.75*t) + 200*t*(-0.75)*np.exp(-0.75*t)

#fx  = lambda t: 200*np.exp(-0.75*t) + 200*t*(-0.75)*np.exp(-0.75*t)
#dfx = lambda t: (112.5*t - 300.0)*np.exp(-0.75*t)

x0 = 1
tolera = 0.00001

# PROCEDIMIENTO
respuesta = newton_raphson(fx,dfx,x0, tolera, vertabla=True)
# SALIDA
print('raíz en: ', respuesta)

Para la gráfica se añade:

# grafica
a = 0
b = 2
muestras = 21

xi = np.linspace(a,b,muestras)
fi = fx(xi)
plt.plot(xi,fi)
plt.axhline(0)
plt.xlabel('x')
plt.ylabel('f(x)')
plt.show()

Literal b

Para el caso de encontrar el máximo se usaría la expresión fb(t) cuando f'(t)= 0.

Con lo que para el algoritmo la expresión nueva f(t) es :

y fb‘(t) es f''(t):

f_b(t) = f'(t) = 200 e^{-0.75t} + 200 t (-0.75) e^{-0.75t} f_b'(t) = f''(t) = (112.5t-300)e^{-0.75t}

se desarrolla las expresiones con Sympy :

>>> import sympy as sym
>>> t = sym.Symbol('t')
>>> f = 200*t*sym.exp(-0.75*t)-80
>>> sym.diff(f,t,1)
-150.0*t*exp(-0.75*t) + 200*exp(-0.75*t)
>>> sym.diff(f,t,2)
(112.5*t - 300.0)*exp(-0.75*t)
>>> 

Se actualiza el algoritmo con las funciones:

fx  = lambda t: 200*np.exp(-0.75*t) + 200*t*(-0.75)*np.exp(-0.75*t)
dfx = lambda t: (112.5*t - 300.0)*np.exp(-0.75*t)

y se obtiene como resultado:

método de Newton-Raphson
i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [  1.      23.6183 -88.5687   1.2667   0.2667]
1 [  1.2667   3.8674 -60.9117   1.3302   0.0635]
2 [ 1.3302e+00  1.7560e-01 -5.5445e+01  1.3333e+00  3.1671e-03]
3 [ 1.3333e+00  4.1611e-04 -5.5183e+01  1.3333e+00  7.5406e-06]
raíz en:  1.3333333332906878

 

s1Eva_IIT2008_T3_MN Ganancia en inversión

Ejercicio: 1Eva_IIT2008_T3_MN Ganancia en inversión

Se dispone de los datos (x, f(x)), en donde x es un valor de inversión y f(x) es un valor de ganancia, ambos en miles de dólares.

xi = np.array([3.2 , 3.8 , 4.2 , 4.5 ]) 
fi = np.array([5.12, 6.42, 7.25, 6.85])

Los datos se usan junto al modelo propuesto:

f(x) = a_1 x^3 + a_2 x^2 + a_3 x + a_4

generando las expresiones del sistema de ecuaciones:

a_1 (3.2)^3 + a_2 (3.2)^2 + a_3 (3.2) + a_4 = 5.12 a_1 (3.8)^3 + a_2 (3.8)^2 + a_3 (3.8) + a_4 = 6.42 a_1 (4.2)^3 + a_2 (4.2)^2 + a_3 (4.2) + a_4 = 7.25 a_1 (4.5)^3 + a_2 (4.5)^2 + a_3 (4.5) + a_4 = 6.85

Se convierte a la forma Ax=B
\begin{bmatrix} (3.2)^3 && (3.2)^2 && (3.2) && 1 \\ (3.8)^3 && (3.8)^2 && (3.8) && 1 \\ (4.2)^3 && (4.2)^2 && (4.2) && 1 \\ (4.5)^3 && (4.5)^2 && (4.5) && 1 \end{bmatrix} . \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix} = \begin{bmatrix} 5.12 \\ 6.42 \\ 7.25 \\6.85 \end{bmatrix}

Se crea la matriz aumentada

\begin{bmatrix} (3.2)^3 && (3.2)^2 && (3.2) && 1 && 5.12\\ (3.8)^3 && (3.8)^2 && (3.8) && 1 && 6.42 \\ (4.2)^3 && (4.2)^2 && (4.2) && 1 && 7.25 \\ (4.5)^3 && (4.5)^2 && (4.5) && 1 && 6.85 \end{bmatrix}

Se pivotea por filas:

\begin{bmatrix} (4.5)^3 && (4.5)^2 && (4.5) && 1 && 6.85 \\ (4.2)^3 && (4.2)^2 && (4.2) && 1 && 7.25 \\ (3.8)^3 && (3.8)^2 && (3.8) && 1 && 6.42 \\ (3.2)^3 && (3.2)^2 && (3.2) && 1 && 5.12 \end{bmatrix}

Como se pide un método directo, se inicia con el algoritmo de eliminación hacia adelante con factor para cada fila a partir de la diagonal.

\begin{bmatrix} (4.5)^3 && (4.5)^2 && (4.5) \\ (4.2)^3 - (4.5)^3\frac{(4.2)^3}{(4.5)^3} && (4.2)^2 - (4.5)^2\frac{(4.2)^3}{(4.5)^3} && (4.2) - (4.5)\frac{(4.2)^3}{(4.5)^3} \\ (3.8)^3 - (4.5)^3\frac{(3.8)^3}{(4.5)^3} && (3.8)^2 - (4.5)^2\frac{(3.8)^3}{(4.5)^3} && (3.8) -(4.5)\frac{(3.8)^3}{(4.5)^3} \\ (3.2)^3 - (4.5)^3\frac{(3.2)^3}{(4.5)^3} && (3.2)^2 -(4.5)^2\frac{(3.2)^3}{(4.5)^3} && (3.2) - (4.5)\frac{(3.2)^3}{(4.5)^3} \end{bmatrix}

continua a la derecha de la matriz:

\begin{bmatrix} 1 && 6.85 \\ 1 - 1\frac{(4.2)^3}{(4.5)^3} && 7.25 - 6.85\frac{(4.2)^3}{(4.5)^3} \\ 1 -1\frac{(3.8)^3}{(4.5)^3} && 6.42 - 6.85\frac{(3.8)^3}{(4.5)^3}\\1 -1\frac{(3.2)^3}{(4.5)^3} && 5.12-6.85\frac{(3.2)^3}{(4.5)^3} \end{bmatrix}
[[91.125  20.25   4.5    1.     6.85 ]
 [ 0.      1.176  0.541  0.186  1.680]
 [ 0.      2.246  1.090  0.397  2.295]
 [ 0.      2.958  1.581  0.640  2.656]]
Elimina hacia adelante
[[91.125  20.250  4.500  1.000  6.850]
 [ 0.      1.176  0.541  0.186  1.680]
 [ 0.      0.     0.056  0.040 -0.915]
 [ 0.      0.     0.220  0.170 -1.571]]
Elimina hacia adelante
[[91.125  20.250  4.500  1.000  6.850]
 [ 0.      1.176  0.541  0.186  1.680]
 [ 0.      0.000  0.056  0.040 -0.915]
 [ 0.      0.000  0.000  0.010  2.006]]
Elimina hacia adelante
[[91.125  20.250  4.500  1.000  6.850]
 [ 0.      1.176  0.541  0.186  1.680]
 [ 0.      0.     0.056  0.040 -0.915]
 [ 0.      0.     0.     0.010  2.006]]
Elimina hacia atras
[[1. 0. 0. 0.   -3.67490842]
 [0. 1. 0. 0.   41.06730769]
 [0. 0. 1. 0. -149.92086081]
 [0. 0. 0. 1.  184.75692308]]
el vector solución X es:
[[  -3.67490842]
 [  41.06730769]
 [-149.92086081]
 [ 184.75692308]]

verificar que A.X = B
[[6.85]
 [7.25]
 [6.42]
 [5.12]]

con lo que el polinomio buscado es:

f(x) = -3.67490842 x^3 + 41.06730769 x^2 + -149.92086081 x + 184.75692308

que genera la siguiente gráfica:

para encontrar la cantidad necesaria a invertir y obtener 6.0 de ganancia en f(x):

6.0 = -3.67490842 x^3 + 41.06730769 x^2 + -149.92086081 x + 184.75692308

que para usar en el algoritmo se realiza se reordena como g(x) = 0

-3.67490842 x^3 + 41.06730769 x^2 +

-149.92086081 x + 184.75692308 - 6.0 = 0
y se aplica la búsqueda de raices en el rango [a, b] que de la gráfica se estima en [3.2, 3.8]

La ejecución del algoritmo de búsqueda queda como tarea.


Algoritmo en python para obtener la gráfica y respuesta a la matriz:

# Método de Gauss-Jordan ,
# Recibe las matrices A,B
# presenta solucion X que cumple: A.X=B
import numpy as np
import matplotlib.pyplot as plt

# INGRESO
puntos = np.array([[3.2, 5.12],
                   [3.8, 6.42],
                   [4.2, 7.25],
                   [4.5, 6.85]])

A = np.array([[4.5**3 , 4.5**2 , 4.5 , 1],
              [4.2**3 , 4.2**2 , 4.2 , 1],
              [3.8**3 , 3.8**2 , 3.8 , 1],
              [3.2**3 , 3.2**2 , 3.2, 1]])

B = np.array([[6.85],
              [7.25],
              [6.42],
              [5.12]])

# PROCEDIMIENTO
casicero = 1e-15 # 0
AB = np.concatenate((A,B),axis=1)
tamano = np.shape(AB)
n = tamano[0]
m = tamano[1]

print('matriz aumentada: ')
print(AB)
# Gauss elimina hacia adelante
# tarea: verificar términos cero
for i in range(0,n,1):
    pivote = AB[i,i]
    adelante = i+1 
    for k in range(adelante,n,1):
        if (np.abs(pivote)>=casicero):
            factor = AB[k,i]/pivote
            AB[k,:] = AB[k,:] - factor*AB[i,:]
    print('Elimina hacia adelante')
    print(AB)

# Gauss-Jordan elimina hacia atras
ultfila = n-1
ultcolumna = m-1
for i in range(ultfila,0-1,-1):
    # Normaliza a 1 elemento diagonal
    AB[i,:] = AB[i,:]/AB[i,i]
    pivote = AB[i,i] # uno
    # arriba de la fila i
    atras = i-1 
    for k in range(atras,0-1,-1):
        if (np.abs(AB[k,i])>=casicero):
            factor = pivote/AB[k,i]
            AB[k,:] = AB[k,:]*factor - AB[i,:]
        else:
            factor= 'division para cero'
print('Elimina hacia atras')
print(AB)

X = AB[:,ultcolumna]

# Verifica resultado
verifica = np.dot(A,X)

# SALIDA
print('el vector solución X es:')
print(np.transpose([X]))

print('verificar que A.X = B')
print(np.transpose([verifica]))

# Revisa polinomio
a = np.min(puntos[:,0])
b = np.max(puntos[:,0])
muestras = 51

px = lambda x: X[0]*x**3 + X[1]*x**2 +X[2]*x + X[3]
xi = np.linspace(a,b,muestras)
pxi = px(xi)

# gráfica
plt.plot(xi,pxi)
plt.plot(puntos[:,0],puntos[:,1],'ro')
plt.show()

s1Eva_IIT2008_T1 Distribuidores de productos

Ejercicio: 1Eva_IIT2008_T1 Distribuidores de productos

literal a

Siguiendo las instrucciones del enunciado, el promedio de precios del nodo A, se conforma de los precios en los nodos aledaños menos el costo de transporte.

precio en X1 para A = precio en nodoA – costo de transporteA

siguiendo el mismo procedimiento,

precio en X1 para A: (3.1-0.2)
precio de X1 para B: (2.8-0.3)
precio de X1 para C: (2.7-0.4)
precio de X1 para X2: (X2-0.1)
precio de X1 para X3: (X3-0.5)

x_1 = \frac{1}{5} \Big[ (3.1-0.2)+(2.8-0.3)+(2.7-0.4)+ +(x_2-0.1)+(x_3-0.5)\Big] x_1 = \frac{1}{5} \Big[ 2.9+2.5 +2.3+x_2+x_3-0.6\Big] x_1 = \frac{1}{5} (7.1+x_2+x_3) 5x_1 = 7.1+x_2+x_3 5x_1-x_2-x_3 = 7.1

Se continua con el mismo proceso para los siguientes nodos:

x_2 = \frac{1}{4} \Big[ (3.2-0.5)+(3.4-0.3) +(x_1-0.1)+(x_3-0.2)\Big] 4x_2 = (3.2-0.5)+(3.4-0.3) +(x_1-0.1)+(x_3-0.2) 4x_2 = 2.7+3.1 +x_1+x_3-0.3 -x_1+4x_2-x_3 = 5.5

Para X3

x_3 = \frac{1}{4} \Big[ (3.3-0.3)+(2.9-0.2) +(x_1-0.5)+(x_2-0.2)\Big] 4x_3 = 3.0+2.7+x_1+x_2-0.7 4x_3 = 5+x_1+x_2 -x_1-x_2+4x_3= 5

El sistema de ecuaciones se convierte en:

\begin{cases} 5x_1-x_2-x_3 = 7.1 \\ -x_1+4x_2-x_3 = 5.5 \\-x_1-x_2+4x_3= 5 \end{cases}

Para resolver se cambia a la forma Ax=B

\begin{bmatrix} 5 && -1 && -1 \\ -1 && 4 && -1 \\ -1 && -1 && 4 \end{bmatrix} . \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 7.1 \\ 5.5 \\5 \end{bmatrix}

En los métodos directos se usa la forma de matriz aumentada

\begin{bmatrix} 5 && -1 && -1 && 7.1 \\ -1 && 4 && -1 && 5.5 \\ -1 && -1 && 4 && 5 \end{bmatrix}

pivoteo: no es necesario, pues la matriz ya está ordenada de forma diagonalmente dominante.

Eliminación hacia adelante

i=0, f=0

\begin{bmatrix} 5 && -1 && -1 && 7.1 \\ -1-5\big(\frac{-1}{5}\big) && 4 -(-1)\big(\frac{-1}{5}\big) && -1 -(-1)\big(\frac{-1}{5}\big) && 5.5-7.1\big(\frac{-1}{5}\big) \\ -1-5\big(\frac{-1}{5}\big) && -1-(-1)1\big(\frac{-1}{5}\big) && 4-(-1)\big(\frac{-1}{5}\big) && 5-7.1\big(\frac{-1}{5}\big) \end{bmatrix} \begin{bmatrix} 5 && -1 && -1 && 7.1 \\ 0 && 3.8 && -1.2 && 6.92 \\ 0 && -1.2 && 3.8 && 6.42 \end{bmatrix}

Eliminación hacia adelante para i = 1, j=1

Elimina hacia adelante
[[ 5.         -1.         -1.          7.1       ]
 [ 0.          3.8        -1.2         6.92      ]
 [ 0.          0.          3.42105263  8.60526316]]

Eliminación hacia atrás, continuando el desarrollo de forma semejante a los pasos anteriores se obtiene:

Elimina hacia atrás
[[ 1.         -0.         -0.          2.44615385]
 [ 0.          1.         -0.          2.61538462]
 [ 0.          0.          1.          2.51538462]]
el vector solución X es:
[[2.44615385]
 [2.61538462]
 [2.51538462]]
verificar que A.X = B
[[7.1]
 [5.5]
 [5. ]]

literal b

Para el literal b se usa como referencia el número de condición:

>>> np.linalg.cond(A)
2.5274158815808474

El número de condición es cercano a 1, dado que la matriz A es diagonalmente dominante pues los valores mayores de la fila se encuentran en la diagonal. Como el número de condición es cercano a 1 el sistema converge usando métodos iterativos.

La selección del vector inicial para las iteraciones siguiendo el enunciado del problema, se evita el vector cero dado que el precio de un producto para una fabrica no puede ser cero. Se observa los valores de los precios, y se encuentra que el rango de existencia en los nodos es [ 2.7, 3.4] que restando el valor de transporte podrían ser un valor menor a 2.7. Por lo que un buen vector inicial será [2,2,2]


literal c

Se plantean las ecuaciones para el método de Jacobi a partir del sistema de ecuaciones, a partir del pivoteo por filas:

\begin{cases} 5x_1-x_2-x_3 = 7.1 \\ -x_1+4x_2-x_3 = 5.5 \\-x_1-x_2+4x_3= 5 \end{cases} x_1 = \frac{7.1 +x_2 + x_3}{5} x_2 = \frac{ 5.5 +x_1 + x_3}{4} x_3 = \frac{5 +x_1 + x_2}{4}

Si consideramos que el costo mínimo podría ser 2, el precio debería ser mayor x0 = [2,2,2]

itera =  0

x_1 = \frac{7.1 +(2) + (2)}{5} = 2.22 x_2 = \frac{ 5.5 +(2) + (2)}{4} = 2.375 x_3 = \frac{5 +(2) + (2)}{4} =2.25 errado = max|[2.22-2, 2.375-2, 2.25-2]| = max |[0.22, 0.375, 0.25]| = 0.375 X_1 = [2.22, 2.375, 2.25]|

itera = 1

x_1 = \frac{7.1 +(2.375) + (2.25)}{5} = 2.345 x_2 = \frac{ 5.5 +(2.22) + (2.25)}{4} = 2.4925 x_3 = \frac{5 +(2.22) + (2.375)}{4} =2.39875 errado = max|[2.345-2.22, 2.4925-2.375, 2.39875 - 2.25]| = 0.14874999999999972 X_2 = [2.345, 2.4925, 2.39875]

itera = 2

x_1 = \frac{7.1 +(2.4925) + (2.39875)}{5} = 2.39825 x_2 = \frac{ 5.5 +(2.345) + (2.39875)}{4} = 2.5609375 x_3 = \frac{5 +(2.345) + (2.4925)}{4} = 2.459375 errado = max|[2.39825 - 2.345, 2.5609375- 2.4925, 2.459375 - 2.39875]| = 0.06843749999999993 X_3 = [2.39825, 2.5609375, 2.459375 ]

El error disminuye entre iteraciones, por lo que el método converge.

Los datos de las iteraciones usando el algoritmo son:

Matriz aumentada
[[ 5.  -1.  -1.   7.1]
 [-1.   4.  -1.   5.5]
 [-1.  -1.   4.   5. ]]
Pivoteo parcial:
  Pivoteo por filas NO requerido
itera,[X],errado
0 [2. 2. 2.] 1.0
1 [2.22  2.375 2.25 ] 0.375
2 [2.345   2.4925  2.39875] 0.14874999999999972
3 [2.39825   2.5609375 2.459375 ] 0.06843749999999993
4 [2.4240625  2.58940625 2.48979687] 0.030421875000000043
5 [2.43584062 2.60346484 2.50336719] 0.014058593750000181
6 [2.44136641 2.60980195 2.50982637] 0.006459179687499983
7 [2.44392566 2.61279819 2.51279209] 0.0029962402343750583
8 [2.44511806 2.61417944 2.51418096] 0.001388874511718985
9 [2.44567208 2.61482476 2.51482437] 0.0006453167724607134
10 [2.44592983 2.61512411 2.51512421] 0.00029983517456066977
11 [2.44604966 2.61526351 2.51526348] 0.0001393951034542873
12 [2.4461054  2.61532829 2.51532829] 6.480845146183967e-05
numero de condición: 2.5274158815808474
respuesta con Jacobi
[2.4461054 2.61532829 2.51532829]

Algoritmo en Python

# 1Eva_IIT2008_T1 Distribuidores de productos
# Método de Jacobi
import numpy as np

def jacobi(A,B,tolera,X0,iteramax=100, vertabla=False):
    ''' Método de Jacobi, tolerancia, vector inicial X0
        para mostrar iteraciones: vertabla=True
    '''
    A = np.array(A, dtype=float)
    B = np.array(B, dtype=float)
    X0 = np.array(X0, dtype=float)
    tamano = np.shape(A)
    n = tamano[0]
    m = tamano[1]
    diferencia = np.ones(n, dtype=float)
    errado = np.max(diferencia)
    X = np.copy(X0)
    xnuevo = np.copy(X0)

    itera = 0
    if vertabla==True:
        print('itera,[X],errado')
        print(itera, xnuevo, errado)
    while not(errado<=tolera or itera>iteramax):
        
        for i in range(0,n,1):
            nuevo = B[i]
            for j in range(0,m,1):
                if (i!=j): # excepto diagonal de A
                    nuevo = nuevo-A[i,j]*X[j]
            nuevo = nuevo/A[i,i]
            xnuevo[i] = nuevo
        diferencia = np.abs(xnuevo-X)
        errado = np.max(diferencia)
        X = np.copy(xnuevo)
        itera = itera + 1
        if vertabla==True:
            print(itera, xnuevo, errado)
    # No converge
    if (itera>iteramax):
        X=itera
        print('iteramax superado, No converge')
    return(X)

def pivoteafila(A,B,vertabla=False):
    '''
    Pivotea parcial por filas, entrega matriz aumentada AB
    Si hay ceros en diagonal es matriz singular,
    Tarea: Revisar si diagonal tiene ceros
    '''
    A = np.array(A,dtype=float)
    B = np.array(B,dtype=float)
    # Matriz aumentada
    nB = len(np.shape(B))
    if nB == 1:
        B = np.transpose([B])
    AB  = np.concatenate((A,B),axis=1)
    
    if vertabla==True:
        print('Matriz aumentada')
        print(AB)
        print('Pivoteo parcial:')
    
    # Pivoteo por filas AB
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    
    # Para cada fila en AB
    pivoteado = 0
    for i in range(0,n-1,1):
        # columna desde diagonal i en adelante
        columna = np.abs(AB[i:,i])
        dondemax = np.argmax(columna)
        
        # dondemax no es en diagonal
        if (dondemax != 0):
            # intercambia filas
            temporal = np.copy(AB[i,:])
            AB[i,:] = AB[dondemax+i,:]
            AB[dondemax+i,:] = temporal

            pivoteado = pivoteado + 1
            if vertabla==True:
                print(' ',pivoteado, 'intercambiar filas: ',i,'y', dondemax)
    if vertabla==True:
        if pivoteado==0:
            print('  Pivoteo por filas NO requerido')
        else:
            print('AB')
    return(AB)


# INGRESO
A = [[  5, -1, -1],
     [ -1,  4, -1],
     [ -1, -1,  4]]
B = [7.1, 5.5,5]
X0  = [2,2,2]

tolera = 0.0001
iteramax = 100

# PROCEDIMIENTO
# numero de condicion
ncond = np.linalg.cond(A)
# Pivoteo parcial por filas
AB = pivoteafila(A,B,vertabla=True)
n = len(A)
A = AB[:,:n]
B = AB[:,n]

respuesta = jacobi(A,B,tolera,X0,vertabla=True)

# SALIDA
print('numero de condición:', ncond)
print('respuesta con Jacobi')
print(respuesta)

s1Eva_IIT2008_T1_MN Bacterias contaminantes

Ejercicio: 1Eva_IIT2008_T1_MN Bacterias contaminantes

a.  Planteamiento del problema

estandarizar la fórmula a la forma f(x) = 0

c = 70 e^{-1.5t} + 25 e^{-0.075t}

el valor que debe tomar c = 9, por lo que la función a desarrollar se convierte en:

9 = 70 e^{-1.5t} + 25 e^{-0.075t}

y la que se usará en el algoritmo de búsqueda de raices es:

70 e^{-1.5t} + 25 e^{-0.075t} -9 = 0 f(t) = 70 e^{-1.5t} + 25 e^{-0.075t} -9 = 0

b. Intervalo de búsqueda [a,b]

Como la variable t representa el tiempo, se inicia el análisis con cero por la izquierda o un poco mayor. a=0

Para verificar que existe raíz se evalúa f(a) y f(b) buscando valores donde se presenten cambios de signo.

La función depende de tiempo, por lo que a = 0, y b seleccionar un valor mayor.

Para el caso de b,  si fuesen minutos, se pueden probar con valores considerando el tiempo que duraría un «experimento» en el laboratorio durante una clase. Por ejemplo 60 minutos, 30 minutos, etc, para obtener un punto «b» donde se garantice un cambio de signo f(a) y f(b)

Para el ejemplo, se prueba con b = 15

a = 0
b = 15
f(a) = f(0) = 70*e0 + 25 e0 -9 = 86
f(b) = f(15) = 70*e-1.5*15. + 25 e-0.075*15 -9 = - 0.0036

c. Número de iteraciones

Calcular el número de iteraciones para llegar a la raíz con el error tolerado

error = 0.001

\frac{|15-0|}{2^n} = 0.001 15/0.001 = 2^n log(15/0.001) = nlog(2) n = \frac{log(15/0.001)}{log(2)} = 13.87 n = 14

Verificando la selección usando una gráfica, usando 50 tramos entre [a,b] o 51 muestras en el intervalo.

bacteriasLago02


d. iteraciones

Se encuentra la derivada f'(t) y se aplica el algoritmo Newton-Raphson con valor inicial cero.

f(t) = 70 e^{-1.5t} + 25 e^{-0.075t} -9 = 0 f'(t) = 70(-1.5) e^{-1.5t} + 25(-0.075) e^{-0.075t}

itera = 0 , t0=0

f(0) = 70 e^{-1.5(0)} + 25 e^{-0.075(0)} -9 = 86 f'(0) = 70(-1.5) e^{-1.5(0)} + 25(-0.075) e^{-0.075(0)} =-106.875 t_1 = 0 - \frac{86}{-106.875} = 0.8047 errado = |0.8047- 0| = 0.8047

itera = 1

f(0.8047) = 70 e^{-1.5(0.8047)} + 25 e^{-0.075(0.8047)} -9 = 35.472 f'(0.8047) = 70(-1.5) e^{-1.5(0.8047)} + 25(-0.075) e^{-0.075(0.8047)} = -33.1694 x_2 = 0.8047 - \frac{35.472}{-33.1694} = 1.8741 errado = |1.8741-0.8047| = 1.0694

itera = 2

f(1.8741) = 70 e^{-1.5(1.8741)} + 25 e^{-0.075(1.8741)} -9 = 16.93146 f'(1.8741) = 70(-1.5) e^{-1.5(1.8741)} + 25(-0.075) e^{-0.075(1.8741)} = -7.9434 t_1 = 1.8741 - \frac{16.9314}{-7.9434} = 4.0056 errado = |4.0056 -1.8741| = 2.1315

Se observa que el valor del error crece en cada iteración, por lo que si solo se hacen tres iteraciones, se concluye que el método No converge.
Sin embargo con el algoritmo se observa que el método luego comienza a disminuir, por lo que se calcula hasta la iteración 7, obteniendo un error de 10-6 y una raíz en 13.62.

El resultado final se lo encuentra al usar el algoritmo:

método de Newton-Raphson
i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [   0.       86.     -106.875     0.8047    0.8047]
1 [  0.8047  35.472  -33.1694   1.8741   1.0694]
2 [ 1.8741 16.9314 -7.9434  4.0056  2.1315]
3 [ 4.0056  9.6848 -1.6465  9.8875  5.8819]
4 [ 9.8875  2.9093 -0.8932 13.1445  3.257 ]
5 [13.1445  0.3282 -0.6996 13.6136  0.4691]
6 [ 1.3614e+01  5.7056e-03 -6.7543e-01  1.3622e+01  8.4474e-03]
7 [ 1.3622e+01  1.8070e-06 -6.7500e-01  1.3622e+01  2.6771e-06]
raiz en:  13.622016772385326

Se usa el algoritmo en Python para encontrar el valor. El algoritmo Newton-Raphson mostrado es más pequeño que por ejemplo la bisección, pero requiere realizar un trabajo previo para encontrar la derivada de la función.

# 1Eva_IIT2008_T1_MN Bacterias contaminantes
# Método de Newton-Raphson
import numpy as np

def newton_raphson(fx,dfx,xi, tolera, iteramax=100, vertabla=False, precision=4):
    '''
    fx y dfx en forma numérica lambda
    xi es el punto inicial de búsqueda
    '''
    itera=0
    tramo = abs(2*tolera)
    if vertabla==True:
        print('método de Newton-Raphson')
        print('i', ['xi','fi','dfi', 'xnuevo', 'tramo'])
        np.set_printoptions(precision)
    while (tramo>=tolera):
        fi = fx(xi)
        dfi = dfx(xi)
        xnuevo = xi - fi/dfi
        tramo = abs(xnuevo-xi)
        if vertabla==True:
            print(itera,np.array([xi,fi,dfi,xnuevo,tramo]))
        xi = xnuevo
        itera = itera + 1

    if itera>=iteramax:
        xi = np.nan
        print('itera: ',itera, 'No converge,se alcanzó el máximo de iteraciones')

    return(xi)


# PROGRAMA ---------------------------------
fx = lambda t: 70*(np.e**(-1.5*t)) +25*(np.e**(-0.075*t))-9
dfx = lambda t: -70*1.5*(np.e**(-1.5*t)) -25*0.075*(np.e**(-0.075*t))

# INGRESO
x0 = 0
tolera = 0.001

# PROCEDIMIENTO
raiz = newton_raphson(fx, dfx, x0, tolera, vertabla=True)

# SALIDA
print('raiz en: ', raiz)

# GRAFICA
import matplotlib.pyplot as plt
a = 0
b = 15
muestras = 21

xi = np.linspace(a,b,muestras)
fi = fx(xi)
plt.plot(xi,fi, label='f(x)')
plt.axhline(0)
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid()
plt.legend()
plt.show()

Tarea: Para el problema, realice varios métodos y compare el número de iteraciones y el trabajo realizado al plantear el problema al implementar cada uno.

s1Eva_IT2008_T1 Raíz de funcion(f)

Ejercicio: 1Eva_IT2008_T1 Raíz de funcion(f)

Pasos a Seguir usando: BISECCION

  1. Plantear la fórmula estandarizada f(x) = 0
  2. Seleccionar el rango de análisis [a,b] donde exista cambio de signo.
  3. Calcular el número de iteraciones para llegar a la raíz con el error tolerado
  4. Calcular la raíz:
    4.1 Solución manual en papel: Realizar la tabla que muestre las iteraciones del método:
    4.2 Solución usando el algoritmo: Usar el algoritmo para encontrar la raiz.

1. Plantear la fórmula estandarizada f(x) = 0

\sqrt{f} . ln \Big( R\frac{\sqrt{f}}{2.51} \Big) - 1.1513 = 0

La función depende de la variable f, por lo que por facilidad de trabajo se cambiará a x para no ser confundida con una función f(x).
El valor de R también se reemplaza con R=5000 como indica el problema.
El error tolerado para el problema es de 0.00001

\sqrt{x} . ln \Big( 5000\frac{\sqrt{x}}{2.51} \Big) - 1.1513 = 0

2. Seleccionar el rango de análisis [a,b] donde exista cambio de signo

La función tiene un logaritmo, por lo que no será posible iniciar con cero, sin o con  valor un poco mayor a=0.01. Para el límite superior se escoge para prueba b=2. y se valida el cambio de signo en la función.

>>> import numpy as np
>>> fx = lambda x: np.sqrt(x)*np.log((5000/2.51)*np.sqrt(x))-1.1513
>>> fx(0.01)
-0.62186746547214999
>>> fx(2)
10.082482845673042

validando el rango por cambio de signo en la función [0.01 ,2]

3. Calcular el número de iteraciones para llegar a la raíz con el error tolerado

error = 0.00001

\frac{|2-0.01|}{2^n} = 0.001 1.99/0.00001 = 2^n log(1.99/0.00001) = nlog(2) n = \frac{log(1.99/0.00001)}{log(2)} = 17.6 n = 18

4. Calcular la raíz:

Usando el algoritmo se encuentra que la raiz está en:

raiz:  0.0373930168152
f(raiz) =  -2.25294254252e-06

Primeras iteraciones de la tabla resultante:

 
a,b,c, fa, fb, fc, error
[[  1.00000000e-02   2.00000000e+00   1.00500000e+00  -6.21867465e-01
    6.46707903e+00   6.46707903e+00   1.99000000e+00]
 [  1.00000000e-02   1.00500000e+00   5.07500000e-01  -6.21867465e-01
    4.01907320e+00   4.01907320e+00   9.95000000e-01]
 [  1.00000000e-02   5.07500000e-01   2.58750000e-01  -6.21867465e-01
    2.36921961e+00   2.36921961e+00   4.97500000e-01]
 [  1.00000000e-02   2.58750000e-01   1.34375000e-01  -6.21867465e-01
    1.26563722e+00   1.26563722e+00   2.48750000e-01]
 [  1.00000000e-02   1.34375000e-01   7.21875000e-02  -6.21867465e-01
    5.36709904e-01   5.36709904e-01   1.24375000e-01]
 [  1.00000000e-02   7.21875000e-02   4.10937500e-02  -6.21867465e-01
    6.51903790e-02   6.51903790e-02   6.21875000e-02]
...

el número de iteraciones es filas-1 de la tabla

>>> len(tabla)
19

con lo que se comprueba los resultados.

s1Eva_IIIT2007_T3 Factorar polinomio

Ejercicio: 1Eva_IIIT2007_T3 Factorar polinomio

Para factorar el polinomio:

P_3(x) = 2 x^3 - 5 x^2 + 3 x - 0.1

Se realiza la gráfica para observar los intervalos de búsqueda de raíces.factorar polinomio 01

Para la solución con Newton-Raphson se plantea f(x)=0

2x^3-5x^2 + 3x - 0.1 = 0 f(x) = 2x^3-5x^2 + 3x - 0.1 f'(x) =6x^2-10x + 3 x_{i+1} = x_i -\frac{f(x_i)}{f'(x_i)}

Para la primera raíz a la izquierda, se usa x0 = 0

itera = 0

f(0) = 2(0)^3-5(0)^2 + 3(0) - 0.1 = - 0.1 f'(0) =6(0)^2-10(0) + 3 = 3 x_{1} = 0 -\frac{- 0.1}{3} = 0.03333 error = |0.03333 -0| = 0.03333

itera = 1

f(0.0333) = 2(0.0333)^3-5(0.0333)^2 + 3(0.0333) - 0.1 = -0.0054815 f'(0.0333) =6(0.0333)^2-10(0.0333) + 3 = 2.6733 x_{2} = 0.0333 -\frac{-0.0054815}{2.6733} = 0.035384 error = |0.035384 - 0.03333| = 0.0020504

itera = 2

f(0.035384) = 2(0.035384)^3-5(0.035384)^2 + 3(0.035384) - 0.1 = -0.000020163 f'(0.035384) =6(0.035384)^2-10(0.035384) + 3 = 2.6537 x_{3} = 0.0333 -\frac{-0.000020163}{2.6537} = 0.035391 error = |0.035391 - 0.035384| = 0.0000075982

como el error es del orden de 10-6 que es menor que tolera de 10-5 se considera la raíz encontrada.

raíz en: 0.03539136103889022

los resultados con el algoritmo son:

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 0.     -0.1     3.      0.0333  0.0333]
1 [ 3.3333e-02 -5.4815e-03  2.6733e+00  3.5384e-02  2.0504e-03]
2 [ 3.5384e-02 -2.0163e-05  2.6537e+00  3.5391e-02  7.5982e-06]
raíz en:  0.03539136103889022

para raíz cerca de 1

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 1.  -0.1 -1.   0.9  0.1]
1 [ 0.9    0.008 -1.14   0.907  0.007]
2 [ 9.0702e-01  2.0390e-05 -1.1341e+00  9.0704e-01  1.7979e-05]
raíz en:  0.9070355226186211

para raíz cercana a 1.5

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 1.5    -0.1     1.5     1.5667  0.0667]
1 [1.5667 0.0184 2.06   1.5577 0.0089]
2 [1.5577e+00 3.4849e-04 1.9820e+00 1.5576e+00 1.7583e-04]
3 [1.5576e+00 1.3436e-07 1.9805e+00 1.5576e+00 6.7843e-08]
raíz en:  1.557573116112315

Instrucciones en Python

# 1ra Eval III Término 2007
# Tema 3. Factorar polinomio
import numpy as np
import matplotlib.pyplot as plt

def newton_raphson(fx,dfx,xi, tolera, iteramax=100, vertabla=False, precision=4):
    '''
    fx y dfx en forma numérica lambda
    xi es el punto inicial de búsqueda
    '''
    itera=0
    tramo = abs(2*tolera)
    if vertabla==True:
        print('método de Newton-Raphson')
        print('i', ['xi','fi','dfi', 'xnuevo', 'tramo'])
        np.set_printoptions(precision)
    while (tramo>=tolera):
        fi = fx(xi)
        dfi = dfx(xi)
        xnuevo = xi - fi/dfi
        tramo = abs(xnuevo-xi)
        if vertabla==True:
            print(itera,np.array([xi,fi,dfi,xnuevo,tramo]))
        xi = xnuevo
        itera = itera + 1

    if itera>=iteramax:
        xi = np.nan
        print('itera: ',itera, 'No converge,se alcanzó el máximo de iteraciones')

    return(xi)

# Literal a)
fx = lambda x: 2*x**3 - 5*x**2 + 3*x -0.1
dfx = lambda x: 6*x**2 - 10*x +3
# Literal b)
#fx =  lambda x: (2*x**3 - 5*x**2 + 3*x -0.1)/(x-0.03539136103889022)
#dfx = lambda x: (6*x**2 - 10*x + 3)/(x - 0.0353913610388902) - (2*x**3 - 5*x**2 + 3*x - 0.1)/(x - 0.0353913610388902)**2

x0 = 0
tolera = 0.0001

# PROCEDIMIENTO
respuesta = newton_raphson(fx,dfx,x0, tolera, vertabla=True)

# SALIDA
print('raíz en: ', respuesta)

# simplificando el polinomio
import sympy as sym
x = sym.Symbol('x')
p = 2*x**3 - 5*x**2 + 3*x -0.1
Q2 = p/(x-respuesta)
dQ2 = sym.diff(Q2,x,1)
print('Q2')
print(Q2)
print('dQ2')
print(dQ2)


# grafica
a = 0
b = 2
muestras = 21
xi = np.linspace(a,b, muestras)
fi = fx(xi)
plt.plot(xi,fi, label='P(x)')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.title('P3(x)')
plt.axhline(0)
plt.grid()
plt.show()

literal b

Obtenga el polinomio cociente Q2(x), a partir de P3(x) = (x – r1)Q2(x)

Se simplifica el polinomio realizando la división:

Q_2(x) = \frac{2 x^3 - 5 x^2 + 3 x - 0.1}{x-0.03539136103889022} Q'_2(x) = \frac{ 6 x^2 - 10 x + 3}{x - 0.0353913610388902} - \frac{2 x^3 - 5 x^2 + 3 x - 0.1}{(x - 0.0353913610388902)^2}

Se reutiliza el algoritmo usando las nuevas expresiones

# Literal b)
# PROCEDIMIENTO
fx =  lambda x: (2*x**3 - 5*x**2 + 3*x -0.1)/(x-raiz1)
dfx = lambda x: (6*x**2 - 10*x + 3)/(x - 0.0353913610388902) - (2*x**3 - 5*x**2 + 3*x - 0.1)/(x - 0.0353913610388902)**2

la derivada se puede obtener usando la librería Sympy, con las instrucciones:

# simplificando el polinomio
import sympy as sym
x = sym.Symbol('x')
p = 2*x**3 - 5*x**2 + 3*x -0.1
Q2 = p/(x-respuesta)
dQ2 = sym.diff(Q2,x,1)
print('Q2')
print(Q2)
print('dQ2')
print(dQ2)

Usando los resultados de Q2(x) y actualizando las expresiones para f(x) y f'(x) se obtienen los siguientes resultados, que verifican las raíces encontradas en el literal a.

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 0.      2.8255 -4.9292  0.5732  0.5732]
1 [ 0.5732  0.6572 -2.6363  0.8225  0.2493]
2 [ 0.8225  0.1243 -1.6392  0.8983  0.0758]
3 [ 0.8983  0.0115 -1.336   0.9069  0.0086]
4 [ 9.0692e-01  1.4809e-04 -1.3015e+00  9.0704e-01  1.1379e-04]
5 [ 9.0704e-01  2.5894e-08 -1.3011e+00  9.0704e-01  1.9902e-08]
raíz en:  0.9070355227446406

La gráfica obtenida para Q2(x) es:

factorar polinomio Q2(x)


literal c

La otra raíz cercana a 1.5 se calcula a partir de Q2(x) usando el algoritmo.

i ['xi', 'fi', 'dfi', 'xnuevo', 'tramo']
0 [ 1.5    -0.0683  1.0708  1.5638  0.0638]
1 [1.5638 0.0081 1.3258 1.5576 0.0061]
2 [1.5576e+00 7.5234e-05 1.3013e+00 1.5576e+00 5.7814e-05]
raíz en:  1.5575731212503858

literal d

El polinomio:

P_3(x) = 2 x^3 - 5 x^2 + 3 x - 0.1

se expresa también formado como parte de sus raíces:

P_3(x) = (x - 0.0353913)(x - 0.907035 )(x -1.557573 )