3.4 Método de Gauss-Jordan con Python

[ Gauss-Jordan ] [ Ejercicio ] [ Eliminación atrás ] [ Algoritmo ]
..


1. Método de Gauss-Jordan

Referencia: Chapra 9.7 p277, Burden 9Ed Ex6.1.12 p370, Rodríguez 4.2 p106

El método de Gauss-Jordan presenta un procedimiento alterno al de «sustitución hacia atrás» realizado para el método de Gauss.

Se mantienen los procedimientos para:

  • matriz aumentada,
  • pivoteo por filas
  • eliminación hacia adelante

al haber obtenido la «matriz triangular superior» , se aplica el procedimiento:

  • eliminación hacia atrás

[ Gauss-Jordan ] [ Ejercicio ] [ Eliminación atrás ] [ Algoritmo ]
..


2. Ejercicio

Referencia: Rodríguez 4.0 p105,  1Eva_IT2010_T3_MN Precio artículos

\begin{cases} 4x_1+2x_2+5x_3 = 60.70 \\ 2x_1+5x_2+8x_3 = 92.90 \\ 5x_1+4x_2+3x_3 = 56.30 \end{cases}

Se continúa con el ejercicio desarrollado para el método de Gauss desde la «matriz triangular superior»y aumentada, luego de eliminación hacia adelante:

[[ 5.    4.    3.   56.3 ]
 [ 0.    3.4   6.8  70.38]
 [ 0.    0.    5.   40.5 ]]

[ Gauss-Jordan ] [ Ejercicio ] [ Eliminación atrás ] [ Algoritmo ]
..


3. Eliminación hacia atrás

El procedimiento es semejante al realizado para «eliminación hacia adelante», con la diferencia que se inicia en la última fila hacia la primera.

Las operaciones se realizan de abajo hacia arriba desde la última fila.
Para el ejercicio presentado se tiene que:

utlfila = n-1 = 3-1 = 2
ultcolumna = m-1 = 4-1 = 3

iteración 1, operación fila 3 y 2

Se aplica desde la última fila i, para las otras filas k que se encuentran hacia atrás.

i = 2
pivote = AB[2,2] = 5
k = i-1 # hacia atrás

se realizan las operaciones entre las filas i y la fila k

         [0.  3.4  6.8    70.38]
-(6.8/5)*[0.  0.   5.     40.5 ]
_______________________________
       = [0.0 3.4  8.8e-16 15.3]

para reemplazar los valores de la segunda fila en la matriz aumentada

[[5.0    4.0    3.0      56.3]
 [0.0    3.4    8.8e-16  15.3]
 [0.0    0.0    5.0      40.5]]

Observe que hay un valor muy pequeño del orden de 8.8×10-16, que para las otras magnitudes se puede considerar como casi cero.

iteración 2, operación fila 3 y 1

Se calculan los nuevos valores de indice k

k = k-1 = 2-1 = 1 # hacia atrás

se realizan las operaciones entre las filas i y la fila k

       [5.0    4.0    3.0    56.3]
-(3/5)*[0.0    0.0    5.0    40.5]
__________________________________
     = [5.0    4.0    0.0    32.0]

que al actualizar la matriz aumentada se tiene:

[[5.0    4.0    0.0      32.0]
 [0.0    3.4    8.8e-16  15.3]
 [0.0    0.0    5.0      40.5]]}

Al haber terminado las filas hacia arriba, se puede así determinar el valor de x3 al dividir la fila 3 para el pivote

[[5.0    4.0    0.0      32.0]
 [0.0    3.4    8.8e-16  15.3]
 [0.0    0.0    1.0       8.1]]}

iteración 3, operación fila 2 y 1

se actualizan los valores de los índices:

i = i-1 = 2-1 = 1
k = i-1 = 1-1 = 0

se pueden realizar operaciones en una sola fila hacia atrás, por lo que el resultado hasta ahora es:

[[ 5.0    0.0   -1.04e-15  14.0]
 [ 0.0    3.4    8.8e-16   15.3]
 [ 0.0    0.0    1.0        8.1]]

Se obtiene el valor de x2, dividiendo para el valor del pivote,

[[ 5.0    0.0   -1.04e-15  14.0]
 [ 0.0    1.0    2.6e-16    4.5]
 [ 0.0    0.0    1.0        8.1]]

iteración 4, operación fila 1

No hay otras filas con las que iterar, por lo que solo se obtiene el valor de x1 al dividir para el pivote.

[[ 1.0    0.0   -2.08e-15  2.8]
 [ 0.0    1.0    2.6e-16   4.5]
 [ 0.0    0.0    1.0       8.1]]

La solución del sistema de ecuaciones se presenta como una matriz identidad concatenada a un vector columna de constantes.

solución X: 
[2.8 4.5 8.1]
X= \begin{pmatrix} 2.8\\ 4.5 \\ 8.1 \end{pmatrix}

Observación: en la matriz hay unos valores del orden de 10-16, que corresponden a errores de operaciones en computadora (truncamiento y redondeo) que pueden ser descartados por ser casi cero. Hay que establecer entonces un parámetro para controlar los casos en que la diferencia entre los ordenes de magnitud son por ejemplo menores a 15 ordenes de magnitud 10-15. e implementarlo en los algoritmos.

[ Gauss-Jordan ] [ Ejercicio ] [ Eliminación atrás ] [ Algoritmo ]
..


4. Algoritmo en Python

Esta sección reutiliza el algoritmo desarrollado para el Método de Gauss, por lo que los bloques de procedimiento son semejantes hasta eliminación hacia adelante. Se añade el procedimiento de eliminación hacia atrás para completar la solución al sistema de ecuaciones.

 

Se obtiene el siguiente resultado con el algoritmo:

Matriz aumentada
[[ 4.   2.   5.  60.7]
 [ 2.   5.   8.  92.9]
 [ 5.   4.   3.  56.3]]
Pivoteo parcial:
  1 intercambiar filas:  0 y 2
[[ 5.   4.   3.  56.3]
 [ 2.   5.   8.  92.9]
 [ 4.   2.   5.  60.7]]
Elimina hacia adelante:
 fila 0 pivote:  5.0
   factor:  0.4  para fila:  1
   factor:  0.8  para fila:  2
 fila 1 pivote:  3.4
   factor:  -0.3529411764705883  para fila:  2
 fila 2 pivote:  5.0
[[ 5.    4.    3.   56.3 ]
 [ 0.    3.4   6.8  70.38]
 [ 0.    0.    5.   40.5 ]]
Elimina hacia Atras:
 fila 2 pivote:  5.0
   factor:  1.3599999999999999  para fila:  1
   factor:  0.6  para fila:  0
 fila 1 pivote:  3.4
   factor:  1.1764705882352942  para fila:  0
 fila 0 pivote:  5.0
[[ 1.00000000e+00  0.00000000e+00 -2.08983158e-16  2.80000000e+00]
 [ 0.00000000e+00  1.00000000e+00  2.61228947e-16  4.50000000e+00]
 [ 0.00000000e+00  0.00000000e+00  1.00000000e+00  8.10000000e+00]]
solución X: 
[2.8 4.5 8.1]
>>> 

Instrucciones en Python

# Método de Gauss-Jordan
# Solución a Sistemas de Ecuaciones
# de la forma A.X=B

import numpy as np

def pivoteafila(A,B,vertabla=False):
    '''
    Pivotea parcial por filas
    Si hay ceros en diagonal es matriz singular,
    Tarea: Revisar si diagonal tiene ceros
    '''
    A = np.array(A,dtype=float)
    B = np.array(B,dtype=float)
    # Matriz aumentada
    nB = len(np.shape(B))
    if nB == 1:
        B = np.transpose([B])
    AB  = np.concatenate((A,B),axis=1)
    
    if vertabla==True:
        print('Matriz aumentada')
        print(AB)
        print('Pivoteo parcial:')
    
    # Pivoteo por filas AB
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    
    # Para cada fila en AB
    pivoteado = 0
    for i in range(0,n-1,1):
        # columna desde diagonal i en adelante
        columna = np.abs(AB[i:,i])
        dondemax = np.argmax(columna)
        
        # dondemax no es en diagonal
        if (dondemax != 0):
            # intercambia filas
            temporal = np.copy(AB[i,:])
            AB[i,:] = AB[dondemax+i,:]
            AB[dondemax+i,:] = temporal

            pivoteado = pivoteado + 1
            if vertabla==True:
                print(' ',pivoteado, 'intercambiar filas: ',i,'y', dondemax+i)
    if vertabla==True:
        if pivoteado==0:
            print('  Pivoteo por filas NO requerido')
        else:
            print(AB)
    return(AB)

def gauss_eliminaAdelante(AB, vertabla=False,lu=False,casicero = 1e-15):
    ''' Gauss elimina hacia adelante, a partir de,
    matriz aumentada y pivoteada.
    Para respuesta en forma A=L.U usar lu=True entrega[AB,L,U]
    '''
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    L = np.identity(n,dtype=float) # Inicializa L
    if vertabla==True:
        print('Elimina hacia adelante:')
    for i in range(0,n,1):
        pivote = AB[i,i]
        adelante = i+1
        if vertabla==True:
            print(' fila',i,'pivote: ', pivote)
        for k in range(adelante,n,1):
            if (np.abs(pivote)>=casicero):
                factor = AB[k,i]/pivote
                AB[k,:] = AB[k,:] - factor*AB[i,:]

                L[k,i] = factor # llena L
                
                if vertabla==True:
                    print('   factor: ',factor,' para fila: ',k)
            else:
                print('  pivote:', pivote,'en fila:',i,
                      'genera division para cero')
    respuesta = AB
    if vertabla==True:
        print(AB)
    if lu==True:
        U = AB[:,:n-1]
        respuesta = [AB,L,U]
    return(respuesta)

def gauss_eliminaAtras(AB, vertabla=False, precision=5, casicero = 1e-15):
    ''' Gauss-Jordan elimina hacia atras
    Requiere la matriz triangular inferior
    Tarea: Verificar que sea triangular inferior
    '''
    tamano = np.shape(AB)
    n = tamano[0]
    m = tamano[1]
    
    ultfila = n-1
    ultcolumna = m-1
    if vertabla==True:
        print('Elimina hacia Atras:')
        
    for i in range(ultfila,0-1,-1):
        pivote = AB[i,i]
        atras = i-1  # arriba de la fila i
        if vertabla==True:
            print(' fila',i,'pivote: ', pivote)
            
        for k in range(atras,0-1,-1):
            if (np.abs(AB[k,i])>=casicero):
                factor = AB[k,i]/pivote
                AB[k,:] = AB[k,:] - factor*AB[i,:]
                
                if vertabla==True:
                    print('   factor: ',factor,' para fila: ',k)
            else:
                print('  pivote:', pivote,'en fila:',i,
                      'genera division para cero')
 
        AB[i,:] = AB[i,:]/AB[i,i] # diagonal a unos
    X = np.copy(AB[:,ultcolumna])
    
    if vertabla==True:
        print(AB)
    return(X)

# PROGRAMA ------------------------
# INGRESO
A = [[4,2,5],
     [2,5,8],
     [5,4,3]]

B = [60.70,92.90,56.30]

# PROCEDIMIENTO
AB = pivoteafila(A,B,vertabla=True)

AB = gauss_eliminaAdelante(AB,vertabla=True)

X = gauss_eliminaAtras(AB,vertabla=True)

# SALIDA
print('solución X: ')
print(X)

Tarea: implementar caso cuando aparecen ceros en la diagonal para dar respuesta, convertir a funciones cada parte

[ Gauss-Jordan ] [ Ejercicio ] [ Eliminación atrás ] [ Algoritmo ]