6.4 Métodos EDO con gráficos animados en Python

animación: [ EDO Taylor 3t ] [ Runge Kutta  dy/dx ] [ Sistemas EDO con RK ]

Solo para fines didácticos, y como complemento para los ejercicios presentados en la unidad para la solución de Ecuaciones Diferenciales Ordinarias, se presentan las instrucciones para las animaciones usadas en la presentación de los conceptos y ejercicios. Los algoritmos para animación NO son necesarios para realizar los ejercicios, que requieren una parte analítica con al menos tres iteraciones en papel y lápiz. Se lo adjunta como una herramienta didáctica de asistencia para las clases.

animación: [ EDO Taylor 3t ] [ Runge Kutta  dy/dx ] [ Sistemas EDO con RK ]

..


EDO con Taylor de 3 términos

Edo con Taylor de 3 términos GIF animado

Tabla de resultados:

 EDO con Taylor 3 términos
 [xi,     yi,     d1yi,    d2yi,   término 1,   término 2 ]
[[0.         1.         0.         0.         0.         0.        ]
 [0.1        1.215      2.         3.         0.2        0.015     ]
 [0.2        1.461025   2.305      3.105      0.2305     0.015525  ]
 [0.3        1.73923262 2.621025   3.221025   0.2621025  0.01610513]
 [0.4        2.05090205 2.94923262 3.34923262 0.29492326 0.01674616]
 [0.5        2.39744677 3.29090205 3.49090205 0.32909021 0.01745451]]
>>> 

Instrucciones en Python

# EDO. Método de Taylor con3 términos 
# estima solucion para muestras separadas h en eje x
# valores iniciales x0,y0
import numpy as np

def edo_taylor3t(d1y,d2y,x0,y0,h,muestras, vertabla=False, precision=6):
    ''' solucion a EDO usando tres términos de Taylor,
    x0,y0 son valores iniciales, h es el tamaño de paso,
    muestras es la cantidad de puntos a calcular.
    '''
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,6),dtype=float)
    # incluye el punto [x0,y0]
    tabla[0] = [x0,y0,0,0,0,0]
    x = x0
    y = y0
    for i in range(1,tamano,1):
        d1yi = d1y(x,y)
        d2yi = d2y(x,y)
        y = y + h*d1yi + ((h**2)/2)*d2yi
        x = x + h
        
        term1 = h*d1yi
        term2 = ((h**2)/2)*d2yi
        
        tabla[i] = [x,y,d1yi,d2yi,term1,term2]
    if vertabla==True:
        titulo = ' [xi,     yi,     d1yi,   d2yi,'
        titulo = titulo + '   término 1,   término 2 ]'
        np.set_printoptions(precision)
        print(' EDO con Taylor 3 términos')
        print(titulo)
        print(tabla)
        
    return(tabla)

# PROGRAMA -----------------
# Ref Rodriguez 9.1.1 p335 ejemplo.
# prueba y'-y-x+(x**2)-1 =0, y(0)=1
# INGRESO.
# d1y = y', d2y = y''
d1y = lambda x,y: y - x**2 + x + 1
d2y = lambda x,y: y - x**2 - x + 2
x0 = 0
y0 = 1
h  = 0.1
muestras = 5

# PROCEDIMIENTO
tabla = edo_taylor3t(d1y,d2y,x0,y0,h,muestras,
                     vertabla=True)

# SALIDA
##print(' EDO con Taylor 3 términos')
##print(' [xi,     yi,     d1yi,',
##      '   d2yi,   término 1,   término 2 ]')
##print(tabla)

# GRAFICA
import matplotlib.pyplot as plt
xi = tabla[:,0]
yi = tabla[:,1]
plt.plot(xi,yi)
plt.plot(xi[0],yi[0],'o', color='r', label ='[x0,y0]')
plt.plot(xi[1:],yi[1:],'o', color='g', label ='y estimada')
plt.title('EDO: Solución con Taylor 3 términos')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.grid()
#plt.show() #comentar para la siguiente gráfica


# GRAFICA CON ANIMACION --------
# import matplotlib.pyplot as plt
import matplotlib.animation as animation

unmetodo = 'Edo con Taylor 3 términos'
narchivo = 'EdoTaylor3t' # nombre archivo GIF
muestras = 51 

# Puntos para la gráfica
a = xi[0]
b = xi[1]
term1 = tabla[:,4]
term2 = tabla[:,5]
dfi = tabla[:,2]
n = len(xi)

# Parametros de trama/foto
retardo = 1000   # milisegundos entre tramas
tramas = len(xi)

# GRAFICA animada en fig_ani
fig_ani, graf_ani = plt.subplots()
ymax = np.max([yi[0],yi[2]])
ymin = np.min([yi[0],yi[2]])
deltax = np.abs(xi[2]-xi[0])
deltay = np.abs(yi[2]-yi[0])
graf_ani.set_xlim([xi[0],xi[2]+0.05*deltax])
graf_ani.set_ylim([ymin-0.05*deltay,ymax+0.05*deltay])
# Lineas y puntos base
linea_fx, = graf_ani.plot(xi, yi,color='blue',
                          linestyle='dashed')
puntof, = graf_ani.plot(xi[0], yi[0],'o',
                        color='green',
                        label='xi,yi')
puntoa, = graf_ani.plot(xi[0], yi[0],'o',
                        color='Blue')
puntob, = graf_ani.plot(xi[1], yi[1],'o',
                        color='orange')

linea_h, = graf_ani.plot(xi, xi, color='orange',
                         label='h',
                         linestyle='dashed')
linea_term1, = graf_ani.plot(xi, xi,
                             color='green',label="h*y'[i]",
                             linestyle='dashed')
linea_term2, = graf_ani.plot(xi, yi, linewidth=4,
                             color='magenta',
                             label="((h**2)/2!)*y''[i]")
# Aproximacion con tangente
b0 = yi[0] - dfi[1]*xi[0]
tangentei = dfi[1]*xi + b0
linea_tang, = graf_ani.plot(xi, tangentei, color='dodgerblue',
                             label="tangente",
                             linestyle='dotted')

# Cuadros de texto en gráfico
txt_i  = graf_ani.text(xi[0], yi[0]+0.03*deltay,'[x[i],y[i]]',
                       horizontalalignment='center')
txt_i1 = graf_ani.text(xi[1], xi[1]+0.03*deltay,'[x[i+1],y[i+1]]',
                       horizontalalignment='center')
# Configura gráfica
graf_ani.axhline(0, color='black')  # Linea horizontal en cero
graf_ani.set_title(unmetodo)
graf_ani.set_xlabel('x')
graf_ani.set_ylabel('f(x)')
graf_ani.legend()
graf_ani.grid()

# Nueva Trama
def unatrama(i,xi,yi,dfi,term1,term2):
    
    if i>1:
        ymax = np.max([yi[0:i+2]])
        ymin = np.min([yi[0:i+2]])
        deltax = np.abs(xi[i+1]-xi[0])
        deltay = np.abs(ymax-ymin)
        graf_ani.set_xlim([xi[0]-0.05*deltax,xi[i+1]+0.05*deltax])
        graf_ani.set_ylim([ymin-0.05*deltay,ymax+0.1*deltay])
    else:
        ymax = np.max([yi[0],yi[2]])
        ymin = np.min([yi[0],yi[2]])
        deltax = np.abs(xi[2]-xi[0])
        deltay = np.abs(ymax-ymin)
        graf_ani.set_xlim([xi[0]-0.05*deltax,xi[2]+0.05*deltax])
        graf_ani.set_ylim([ymin-0.05*deltay,ymax+0.1*deltay])
    # actualiza cada punto
    puntoa.set_xdata(xi[i]) 
    puntoa.set_ydata(yi[i])
    puntob.set_xdata(xi[i+1]) 
    puntob.set_ydata(yi[i+1])
    puntof.set_xdata(xi[0:i]) 
    puntof.set_ydata(yi[0:i])
    # actualiza cada linea
    linea_fx.set_xdata(xi[0:i+1])
    linea_fx.set_ydata(yi[0:i+1])
    linea_h.set_xdata([xi[i],xi[i+1]])
    linea_h.set_ydata([yi[i],yi[i]])
    linea_term1.set_xdata([xi[i+1],xi[i+1]])
    linea_term1.set_ydata([yi[i],yi[i]+term1[i+1]])
    linea_term2.set_xdata([xi[i+1],xi[i+1]])
    linea_term2.set_ydata([yi[i]+term1[i+1],
                           yi[i]+term1[i+1]+term2[i+1]])
    
    b0 = yi[i] - dfi[i+1]*xi[i]
    tangentei = dfi[i+1]*xi + b0
    linea_tang.set_ydata(tangentei)
    # actualiza texto
    txt_i.set_position([xi[i], yi[i]+0.03*deltay])
    txt_i1.set_position([xi[i+1], yi[i+1]+0.03*deltay])

    return (puntoa,puntob,puntof,
            linea_fx,linea_h,linea_tang,
            linea_term1,linea_term2,
            txt_i,txt_i1,)
# Limpia Trama anterior
def limpiatrama(): 
    puntoa.set_ydata(np.ma.array(xi, mask=True))
    puntob.set_ydata(np.ma.array(xi, mask=True))
    puntof.set_ydata(np.ma.array(xi, mask=True))
    linea_h.set_ydata(np.ma.array(xi, mask=True))
    linea_term1.set_ydata(np.ma.array(xi, mask=True))
    linea_term2.set_ydata(np.ma.array(xi, mask=True))
    linea_tang.set_ydata(np.ma.array(xi, mask=True))
    return (puntoa,puntob,puntof,
            linea_fx,linea_h,linea_tang,
            linea_term1,linea_term2,
            txt_i,txt_i1,)

# Trama contador
i = np.arange(0,tramas-1,1)
ani = animation.FuncAnimation(fig_ani,
                              unatrama,
                              i ,
                              fargs = (xi,yi,dfi,term1,term2),
                              init_func = limpiatrama,
                              interval = retardo,
                              blit=False)
# Graba Archivo GIFAnimado y video
ani.save(narchivo+'_GIFanimado.gif', writer='imagemagick')
# ani.save(narchivo+'_video.mp4')
plt.draw()
plt.show()

animación: [ EDO Taylor 3t ] [ Runge Kutta  dy/dx ] [ Sistemas EDO con RK ]

..


Runge Kutta de 2do Orden para primera derivada

EDO Runge-Kutta 2do orden primera derivada _animado

 EDO con Runge-Kutta 2do Orden primera derivada
 [xi,     yi,     K1,    K2 ]
[[0.       1.       0.       0.      ]
 [0.1      1.2145   0.2      0.229   ]
 [0.2      1.459973 0.23045  0.260495]
 [0.3      1.73757  0.261997 0.293197]
 [0.4      2.048564 0.294757 0.327233]
 [0.5      2.394364 0.328856 0.362742]]

Instrucciones en Python

# EDO. Método de Runge-Kutta 2do Orden primera derivada 
# estima solucion para muestras separadas h en eje x
# valores iniciales x0,y0
import numpy as np

def rungekutta2(d1y,x0,y0,h,muestras, vertabla=False, precision=6):
    ''' solucion a EDO con Runge-Kutta 2do Orden primera derivada,
        x0,y0 son valores iniciales
        muestras es la cantidad de puntos a calcular con tamaño de paso h.
    '''
    # Runge Kutta de 2do orden
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,2+2),dtype=float)
    
    # incluye el punto [x0,y0]
    tabla[0] = [x0,y0,0,0]
    xi = x0
    yi = y0
    for i in range(1,tamano,1):
        K1 = h * d1y(xi,yi)
        K2 = h * d1y(xi+h, yi + K1)

        yi = yi + (1/2)*(K1+K2)
        xi = xi + h
        
        tabla[i] = [xi,yi,K1,K2]
    if vertabla==True:
        np.set_printoptions(precision)
        titulo = ' [xi,     yi,     K1,    K2 ]'
        print(' EDO con Runge-Kutta 2do Orden primera derivada')
        print(titulo)
        print(tabla)
    return(tabla)

# PROGRAMA -----------------
# Ref Rodriguez 9.1.1 p335 ejemplo.
# prueba y'-y-x+(x**2)-1 =0, y(0)=1
# INGRESO.
# d1y = y', d2y = y''
d1y = lambda x,y: y - x**2 + x + 1
d2y = lambda x,y: y - x**2 - x + 2
x0 = 0
y0 = 1
h  = 0.1
muestras = 5

# PROCEDIMIENTO
tabla = rungekutta2(d1y,x0,y0,h,muestras,
                     vertabla=True)

# SALIDA
##print(' EDO con Runge-Kutta 2do Orden primera derivada')
##print(' [xi,     yi,     d1yi,',', K1,   K2 ]')
##print(tabla)

# GRAFICA
import matplotlib.pyplot as plt
xi = tabla[:,0]
yi = tabla[:,1]
plt.plot(xi,yi)
plt.plot(xi[0],yi[0],'o', color='r', label ='[x0,y0]')
plt.plot(xi[1:],yi[1:],'o', color='g', label ='y estimada')
plt.title('EDO: Solución Runge-Kutta 2do Orden primera derivada')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.grid()
#plt.show() #comentar para la siguiente gráfica


# GRAFICA CON ANIMACION --------
# import matplotlib.pyplot as plt
import matplotlib.animation as animation

unmetodo = 'EDO: Runge-Kutta 2do Orden primera derivada'
narchivo = 'EdoRK2df' # nombre archivo GIF
muestras = 51 

# Puntos para la gráfica
a = xi[0]
b = xi[1]
K1 = tabla[:,2]
K2 = tabla[:,3]
n = len(xi)

# Parametros de trama/foto
retardo = 1000   # milisegundos entre tramas
tramas = len(xi)

# GRAFICA animada en fig_ani
fig_ani, graf_ani = plt.subplots()
ymax = np.max([yi[0],yi[2]])
ymin = np.min([yi[0],yi[2]])
deltax = np.abs(xi[2]-xi[0])
deltay = np.abs(yi[2]-yi[0])
graf_ani.set_xlim([xi[0]-0.05*deltax,xi[2]+0.05*deltax])
graf_ani.set_ylim([ymin-0.05*deltay,ymax+0.1*deltay])
# Lineas y puntos base
linea_fx, = graf_ani.plot(xi, yi,color='blue',
                          linestyle='dashed')
puntof, = graf_ani.plot(xi[0], yi[0],'o',
                        color='green',
                        label='xi,yi')
puntoa, = graf_ani.plot(xi[0], yi[0],'o',
                        color='Blue')
puntob, = graf_ani.plot(xi[1], yi[1],'o',
                        color='orange')

linea_h, = graf_ani.plot(xi, xi, color='orange',
                         label='h',
                         linestyle='dashed')
linea_K1, = graf_ani.plot(xi-0.02*deltax, xi-0.02*deltax,
                          color='green',label="K1",
                          linestyle='dashed')
linea_K2, = graf_ani.plot(xi+0.02*deltax, yi,
                          color='magenta',
                          label="K2",
                          linestyle='dashed')
linea_K12, = graf_ani.plot(xi, yi,
                          color='magenta')

# Cuadros de texto en gráfico
txt_i  = graf_ani.text(xi[0], yi[0]+0.05*deltay,'[x[i],y[i]]',
                       horizontalalignment='center')
txt_i1 = graf_ani.text(xi[1], xi[1]+0.05*deltay,'[x[i+1],y[i+1]]',
                       horizontalalignment='center')

# Configura gráfica
graf_ani.axhline(0, color='black')  # Linea horizontal en cero
graf_ani.set_title(unmetodo)
graf_ani.set_xlabel('x')
graf_ani.set_ylabel('f(x)')
graf_ani.legend()
graf_ani.grid()

# Nueva Trama
def unatrama(i,xi,yi,term1,term2):   
    if i>1:
        ymax = np.max([yi[0:i+2]])
        ymin = np.min([yi[0:i+2]])
        deltax = np.abs(xi[i+1]-xi[0])
        deltay = np.abs(ymax-ymin)
        graf_ani.set_xlim([xi[0]-0.05*deltax,xi[i+1]+0.05*deltax])
        graf_ani.set_ylim([ymin-0.05*deltay,ymax+0.1*deltay])
    else:
        ymax = np.max([yi[0],yi[2]])
        ymin = np.min([yi[0],yi[2]])
        deltax = np.abs(xi[2]-xi[0])
        deltay = np.abs(ymax-ymin)
        graf_ani.set_xlim([xi[0]-0.05*deltax,xi[2]+0.05*deltax])
        graf_ani.set_ylim([ymin-0.05*deltay,ymax+0.1*deltay])
    # actualiza cada punto
    puntoa.set_xdata(xi[i]) 
    puntoa.set_ydata(yi[i])
    puntob.set_xdata(xi[i+1]) 
    puntob.set_ydata(yi[i+1])
    puntof.set_xdata(xi[0:i]) 
    puntof.set_ydata(yi[0:i])
    # actualiza cada linea
    linea_fx.set_xdata(xi[0:i+1])
    linea_fx.set_ydata(yi[0:i+1])
    linea_h.set_xdata([xi[i],xi[i+1]])
    linea_h.set_ydata([yi[i],yi[i]])
    linea_K1.set_xdata([xi[i+1]-0.02*deltax,xi[i+1]-0.02*deltax])
    linea_K1.set_ydata([yi[i],yi[i]+K1[i+1]])
    linea_K2.set_xdata([xi[i+1]+0.02*deltax,xi[i+1]+0.02*deltax])
    linea_K2.set_ydata([yi[i],yi[i]+K2[i+1]])
    linea_K12.set_xdata([xi[i+1]-0.02*deltax,xi[i+1]+0.02*deltax])
    linea_K12.set_ydata([yi[i]+K1[i+1],yi[i]+K2[i+1]])
    # actualiza texto
    txt_i.set_position([xi[i], yi[i]+0.05*deltay])
    txt_i1.set_position([xi[i+1], yi[i+1]+0.05*deltay])

    return (puntoa,puntob,puntof,
            linea_fx,linea_h,linea_K1,linea_K2,linea_K12,
            txt_i,txt_i1,)
# Limpia Trama anterior
def limpiatrama(): 
    puntoa.set_ydata(np.ma.array(xi, mask=True))
    puntob.set_ydata(np.ma.array(xi, mask=True))
    puntof.set_ydata(np.ma.array(xi, mask=True))
    linea_h.set_ydata(np.ma.array(xi, mask=True))
    linea_K1.set_ydata(np.ma.array(xi, mask=True))
    linea_K2.set_ydata(np.ma.array(xi, mask=True))
    linea_K12.set_ydata(np.ma.array(xi, mask=True))
    
    return (puntoa,puntob,puntof,
            linea_fx,linea_h,linea_K1,linea_K2,linea_K12,
            txt_i,txt_i1,)

# Trama contador
i = np.arange(0,tramas-1,1)
ani = animation.FuncAnimation(fig_ani,
                              unatrama,
                              i ,
                              fargs = (xi,yi,K1,K2),
                              init_func = limpiatrama,
                              interval = retardo,
                              blit=False)
# Graba Archivo GIFAnimado y video
ani.save(narchivo+'_GIFanimado.gif', writer='imagemagick')
# ani.save(narchivo+'_video.mp4')
plt.draw()
plt.show()

animación: [ EDO Taylor 3t ] [ Runge Kutta  dy/dx ] [ Sistemas EDO con RK ]
..


Sistemas EDO. modelo depredador-presa con Runge-Kutta 2do Orden
.

Edo Presa Predador GIF animado

Instrucciones en Python

# Modelo predador-presa de Lotka-Volterra
# Sistemas EDO con Runge Kutta de 2do Orden
import numpy as np

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras,
                   vertabla=False, precision = 6):
    ''' solucion a EDO con Runge-Kutta 2do Orden Segunda derivada,
        x0,y0 son valores iniciales, h es tamano de paso,
        muestras es la cantidad de puntos a calcular.
    '''
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,3+4),dtype=float)

    # incluye el punto [x0,y0,z0]
    tabla[0] = [x0,y0,z0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    i=0
    if vertabla==True:
        print('Runge-Kutta Segunda derivada')
        print('i ','[ xi,  yi,  zi',']')
        print('   [ K1y,  K1z,  K2y,  K2z ]')
        np.set_printoptions(precision)
        print(i,tabla[i,0:3])
        print('  ',tabla[i,3:])
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        tabla[i] = [xi,yi,zi,K1y,K1z,K2y,K2z]
        if vertabla==True:
            txt = ' '
            if i>=10:
                txt='  '
            print(str(i)+'',tabla[i,0:3])
            print(txt,tabla[i,3:])
    return(tabla)

# PROGRAMA ------------------

# INGRESO
# Parámetros de las ecuaciones
a = 0.5
b = 0.7
c = 0.35
d = 0.35

# Ecuaciones
f = lambda t,x,y : a*x -b*x*y
g = lambda t,x,y : -c*y + d*x*y

# Condiciones iniciales
t0 = 0
x0 = 2
y0 = 1

# parámetros del algoritmo
h = 0.5
muestras = 101

# PROCEDIMIENTO
tabla = rungekutta2_fg(f,g,t0,x0,y0,h,muestras,vertabla=True)
ti = tabla[:,0]
xi = tabla[:,1]
yi = tabla[:,2]

# SALIDA
print('Sistemas EDO: Modelo presa-predador')
##np.set_printoptions(precision=6)
##print(' [ ti, xi, yi]')
##print(tabla[:,0:4])

# GRAFICA tiempos vs población
import matplotlib.pyplot as plt

fig_t, (graf1,graf2) = plt.subplots(2)
fig_t.suptitle('Modelo predador-presa')
graf1.plot(ti,xi, color='blue',label='xi presa')

#graf1.set_xlabel('t tiempo')
graf1.set_ylabel('población x')
graf1.legend()
graf1.grid()

graf2.plot(ti,yi, color='orange',label='yi predador')
graf2.set_xlabel('t tiempo')
graf2.set_ylabel('población y')
graf2.legend()
graf2.grid()

# gráfica xi vs yi
fig_xy, graf3 = plt.subplots()
graf3.plot(xi,yi)

graf3.set_title('Modelo presa-predador [xi,yi]')
graf3.set_xlabel('x presa')
graf3.set_ylabel('y predador')
graf3.grid()
#plt.show()


# GRAFICA CON ANIMACION --------
# import matplotlib.pyplot as plt
import matplotlib.animation as animation
xi = tabla[:,0]
yi = tabla[:,1]
zi = tabla[:,2]

unmetodo = 'Sistemas EDO Presa-Predador con Runge-Kutta'
narchivo = 'EdoPresaPredador' # nombre archivo GIF
muestras = 51 

# Puntos para la gráfica
a = xi[0]
b = xi[1]
n = len(ti)

# Parametros de trama/foto
retardo = 1000   # milisegundos entre tramas
tramas = len(xi)

# GRAFICA animada en fig_ani
fig_ani, (graf1_ani,graf2_ani) = plt.subplots(2)
ymax = np.max([yi[0],yi[2]])
ymin = np.min([yi[0],yi[2]])
deltax = np.abs(xi[2]-xi[0])
deltay = np.abs(yi[2]-yi[0])
graf1_ani.set_xlim([xi[0],xi[2]+0.05*deltax])
graf1_ani.set_ylim([ymin-0.05*deltay,ymax+0.05*deltay])

zmax = np.max([zi[0],zi[2]])
zmin = np.min([zi[0],zi[2]])
deltax = np.abs(xi[2]-xi[0])
deltaz = np.abs(zi[2]-zi[0])
graf2_ani.set_xlim([xi[0],xi[2]+0.05*deltax])
graf2_ani.set_ylim([zmin-0.05*deltaz,zmax+0.05*deltaz])
# Lineas y puntos base
linea_fx, = graf1_ani.plot(xi, yi,color='blue',
                          linestyle='dashed')
puntof, = graf1_ani.plot(xi[0], yi[0],'o',
                        color='blue',
                        label='xi,yi')
puntoa, = graf1_ani.plot(xi[0], yi[0],'o',
                        color='green')
puntob, = graf1_ani.plot(xi[1], yi[1],'o',
                        color='dodgerblue')
linea_h, = graf1_ani.plot(xi, xi, color='green',
                         label='h',
                         linestyle='dashed')
linea_term1, = graf1_ani.plot(xi, xi,
                             color='dodgerblue',label="(K1y+K2y)/2",
                             linestyle='dashed')
# Cuadros de texto en gráfico
#txt_i  = graf1_ani.text(xi[0], yi[0]+0.03*deltay,'[x[i],y[i]]',
#                       horizontalalignment='center')
#txt_i1 = graf1_ani.text(xi[1], xi[1]+0.03*deltay,'[x[i+1],y[i+1]]',
#                       horizontalalignment='center')

linea_gx, = graf2_ani.plot(xi, zi,color='orange',
                          linestyle='dashed')
puntog, = graf2_ani.plot(xi[0], zi[0],'o',
                        color='orange',
                        label='xi,zi')
puntog_a, = graf2_ani.plot(xi[0], zi[0],'o',
                        color='green')
puntog_b, = graf2_ani.plot(xi[1], zi[1],'o',
                        color='red')
lineag_h, = graf2_ani.plot(xi, xi, color='green',
                         label='h',
                         linestyle='dashed')
lineag_term1, = graf2_ani.plot(xi, xi,
                             color='red',label="(K1z+K2z)/2",
                             linestyle='dashed')

# Configura gráfica
graf1_ani.axhline(0, color='black')  # Linea horizontal en cero
graf1_ani.set_title(unmetodo)
graf1_ani.set_xlabel('x')
graf1_ani.set_ylabel('y(x)')
graf1_ani.legend()
graf1_ani.grid()

graf2_ani.axhline(0, color='black')  # Linea horizontal en cero
#graf2_ani.set_title(unmetodo)
graf2_ani.set_xlabel('x')
graf2_ani.set_ylabel('z(x)')
graf2_ani.legend()
graf2_ani.grid()

# Nueva Trama
def unatrama(i,xi,yi,zi):
    
    if i>1:
        ymax = np.max([yi[0:i+2]])
        ymin = np.min([yi[0:i+2]])
        deltax = np.abs(xi[i+1]-xi[0])
        deltay = np.abs(ymax-ymin)
        graf1_ani.set_xlim([xi[0]-0.05*deltax,xi[i+1]+0.05*deltax])
        graf1_ani.set_ylim([ymin-0.05*deltay,ymax+0.1*deltay])

        zmax = np.max([zi[0:i+2]])
        zmin = np.min([zi[0:i+2]])
        deltaz = np.abs(zmax-zmin)
        graf2_ani.set_xlim([xi[0]-0.05*deltax,xi[i+1]+0.05*deltax])
        graf2_ani.set_ylim([zmin-0.05*deltaz,zmax+0.1*deltaz])
    else:
        ymax = np.max([yi[0:2]])
        ymin = np.min([yi[0:2]])
        deltax = np.abs(xi[2]-xi[0])
        deltay = np.abs(ymax-ymin)
        graf1_ani.set_xlim([xi[0]-0.05*deltax,xi[2]+0.05*deltax])
        graf1_ani.set_ylim([ymin-0.05*deltay,ymax+0.1*deltay])

        zmax = np.max([zi[0:2]])
        zmin = np.min([zi[0:2]])
        deltaz = np.abs(zmax-zmin)
        graf2_ani.set_xlim([xi[0]-0.05*deltax,xi[2]+0.05*deltax])
        graf2_ani.set_ylim([zmin-0.05*deltaz,zmax+0.1*deltaz])
    # actualiza cada punto
    puntoa.set_xdata(xi[i]) 
    puntoa.set_ydata(yi[i])
    puntob.set_xdata(xi[i+1]) 
    puntob.set_ydata(yi[i+1])
    puntof.set_xdata(xi[0:i]) 
    puntof.set_ydata(yi[0:i])
    # actualiza cada linea
    linea_fx.set_xdata(xi[0:i+1])
    linea_fx.set_ydata(yi[0:i+1])
    linea_h.set_xdata([xi[i],xi[i+1]])
    linea_h.set_ydata([yi[i],yi[i]])
    linea_term1.set_xdata([xi[i+1],xi[i+1]])
    linea_term1.set_ydata([yi[i],yi[i+1]])
    # actualiza texto
    #txt_i.set_position([xi[i], yi[i]+0.03*deltay])
    #txt_i1.set_position([xi[i+1], yi[i+1]+0.03*deltay])

    # actualiza cada punto
    puntog_a.set_xdata(xi[i]) 
    puntog_a.set_ydata(zi[i])
    puntog_b.set_xdata(xi[i+1]) 
    puntog_b.set_ydata(zi[i+1])
    puntog.set_xdata(xi[0:i]) 
    puntog.set_ydata(zi[0:i])
    # actualiza cada linea
    linea_gx.set_xdata(xi[0:i+1])
    linea_gx.set_ydata(zi[0:i+1])
    lineag_h.set_xdata([xi[i],xi[i+1]])
    lineag_h.set_ydata([zi[i],zi[i]])
    lineag_term1.set_xdata([xi[i+1],xi[i+1]])
    lineag_term1.set_ydata([zi[i],zi[i+1]])

    return (puntoa,puntob,puntof,
            linea_fx,linea_h,
            linea_term1,)
            #txt_i,txt_i1,)
# Limpia Trama anterior
def limpiatrama(): 
    puntoa.set_ydata(np.ma.array(xi, mask=True))
    puntob.set_ydata(np.ma.array(xi, mask=True))
    puntof.set_ydata(np.ma.array(xi, mask=True))
    linea_h.set_ydata(np.ma.array(xi, mask=True))
    linea_term1.set_ydata(np.ma.array(xi, mask=True))

    puntog_a.set_ydata(np.ma.array(xi, mask=True))
    puntog_b.set_ydata(np.ma.array(xi, mask=True))
    puntog.set_ydata(np.ma.array(xi, mask=True))
    lineag_h.set_ydata(np.ma.array(xi, mask=True))
    lineag_term1.set_ydata(np.ma.array(xi, mask=True))
    return (puntoa,puntob,puntof,
            linea_fx,linea_h,
            linea_term1,
            puntog_a,puntog_b,puntog,
            linea_gx,lineag_h,
            lineag_term1,)
            #txt_i,txt_i1,)

# Trama contador
i = np.arange(0,tramas-1,1)
ani = animation.FuncAnimation(fig_ani,
                              unatrama,
                              i ,
                              fargs = (xi,yi,zi),
                              init_func = limpiatrama,
                              interval = retardo,
                              blit=False)
# Graba Archivo GIFAnimado y video
ani.save(narchivo+'_GIFanimado.gif', writer='imagemagick')
# ani.save(narchivo+'_video.mp4')
plt.draw()
plt.show()

animación: [ EDO Taylor 3t ] [ Runge Kutta  dy/dx ] [ Sistemas EDO con RK ]

6.3 Sistemas EDO. modelo depredador-presa con Runge-Kutta y Python

Sistemas EDO [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ Runge Kutta  d2y/dx2 ]
..


1. Ejercicio

Referencia: Chapra 28.2 p831 pdf855, Rodriguez 9.2.1 p263
https://es.wikipedia.org/wiki/Ecuaciones_Lotka%E2%80%93Volterra
https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations

Modelos depredador-presa y caos. Ecuaciones Lotka-Volterra. En el sistema de ecuaciones:

\frac{dx}{dt} = ax - bxy \frac{dy}{dt} = -cy + dxy

variables
x = número de presas
y = número de depredadores
t = tiempo de observación
coeficientes
a = razón de crecimiento de la presa, (0.5)
c = razón de muerte del depredador (0.35)
b = efecto de la interacción depredador-presa sobre la muerte de la presa (0.7)
d = efecto de la interacción depredador-presa sobre el crecimiento del depredador, (0.35)

Considere como puntos iniciales en la observación de las especies:
t = 0, x = 2, y = 1, h = 0.5

Los términos que multiplican xy hacen que las ecuaciones sean no lineales.
Observe que la variable tiempo no se encuentra en las expresiones f y g, h se aplica a tiempo.

Sistemas EDO [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ Runge Kutta  d2y/dx2 ]
..


2. Desarrollo analíticoEdo Presa Predador GIF animado

Para resolver el sistema, se plantean las ecuaciones de forma simplificada para el algoritmo:

f(t,x,y) = 0.5 x - 0.7 xy g(t,x,y) = -0.35y + 0.35xy

Las expresiones se adaptan al método de Runge-Kutta para primeras derivadas por cada variable de población. Se deben usar de forma simultánea para cada tiempo t.

K1x = h f(t,x,y) = 0.5 \Big( 0.5 x - 0.7 xy \Big) K1y = h g(t,x,y) = 0.5 \Big(-0.35y + 0.35xy \Big)

..

K2x = h f(t+h,x+K1x,y+K1y) = 0.5 \Big( 0.5 (x+K1x) - 0.7 (x+K1x)(y+K1y) \Big) K2y = h g(t+h,x+K1x,y+K1y) = 0.5 \Big(-0.35(y+K1y) + 0.35(x+K1x)(y+K1y) \Big)

..

x[i+1] = x[i] + \frac{K1x+K2x}{2} y[i+1] = y[i] + \frac{K1y+K2y}{2} t[i+1] = t[i] + h

con lo que se puede aplicar al ejercicio en cada iteración. dadas las condiciones iniciales.

Itera = 0

t = 0, x = 2, y = 1, h = 0.5

K1x = 0.5 f(0,2,1) = 0.5 \Big( 0.5 (2) - 0.7 (2)(1) \Big) = -0.2 K1y = 0.5 g(0,2,1) = 0.5 \Big(-0.35(1) + 0.35(2)(1) \Big) =0.175

..

K2x = 0.5 f(0+0.5, 2+(-0.2), 1+0.175) = 0.5 \Big( 0.5 (2+(-0.2)) - 0.7 (2+(-0.2))(1+0.175) \Big) = -0.29025 K2y = 0.5 g(0+0.5, 2+(-0.2), 1+0.175) = 0.5 \Big(-0.35(1+0.175) + 0.35(2+(-0.2))(1+0.175) \Big) = 0.1645

..

x[1] = x[0] + \frac{K1x+K2x}{2} = 2 + \frac{-0.2+(-0.29025)}{2} = 1.7548 y[1] = y[0] + \frac{K1y+K2y}{2} = 1 + \frac{0.175+0.1645}{2}= 1.1697 t[1] = t[0] + h = 0 +0.5 = 0.5

itera = 1

t = 0.5, x = 1.7548, y = 1.1697, h = 0.5

K1x = 0.5 \Big( 0.5 (0,1.7548) - 0.7 (0,1.7548)(1.1697) \Big) = -0.2797 K1y = 0.5 \Big(-0.35(1.1697) + 0.35(1.7548)(1.1697) \Big) =0.1545

..

K2x = 0.5 \Big( 0.5 (1.7548+(-0.2797)) - 0.7 (1.7548+(-0.2797))(1.1697+0.1545) \Big) =-0.3149 K2y = 0.5 \Big(-0.35(1.1697+0.1545) + 0.35(1.7548+(-0.2797))(1.1697+0.1545) \Big) = 0.1645

..

x[2] = 1.7548 + \frac{-0.2797+(-0.3149)}{2} = 1.4575 y[2] = 1.1697 + \frac{0.1545+0.1645}{2} = 1.3020 t[2] = t[0] + h = 0.5 +0.5 = 1

itera=2

t = 1, x = 1.4575, y = 1.3020, h = 0.5

continuar como tarea …

Sistemas EDO [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ Runge Kutta  d2y/dx2 ]

..


3. Algoritmo en Python

Planteamiento que se ingresan al algoritmo con el algoritmo rungekutta2_fg(fx,gx,x0,y0,z0,h,muestras), propuesto en

EDO con Runge-Kutta d2y/dx2

Al ejecutar el algoritmo se obtienen los siguientes resultados:

Runge-Kutta Segunda derivada
i  [ xi,  yi,  zi ]
   [ K1y,  K1z,  K2y,  K2z ]
0 [0. 2. 1.]
   [0. 0. 0. 0.]
1 [0.5      1.754875 1.16975 ]
  [-0.2      0.175   -0.29025  0.1645 ]
2 [1.       1.457533 1.302069]
  [-0.279749  0.154528 -0.314935  0.11011 ]
3 [1.5      1.167405 1.373599]
  [-0.29985   0.104254 -0.280406  0.038807]
4 [2.       0.922773 1.381103]
  [-0.26939   0.040241 -0.219874 -0.025233]
5 [2.5      0.734853 1.33689 ]
  [-0.215362 -0.018665 -0.160478 -0.069761]
6 [3.       0.598406 1.258434]
  [-0.160133 -0.062033 -0.11276  -0.09488 ]
... 

Los resultados de la tabla se muestran parcialmente, pues se usaron mas de 100 iteraciones.

Los resultados se pueden observar de diferentes formas:

a) Cada variable xi, yi versus ti, es decir cantidad de animales de cada especie durante el tiempo de observación

b) Independiente de la unidad de tiempo, xi vs yi, muestra la relación entre la cantidad de presas y predadores. Relación que es cíclica y da la forma a la gráfica.

Las instrucciones del algoritmo en Python usadas en el problema son:

# Modelo predador-presa de Lotka-Volterra
# Sistemas EDO con Runge Kutta de 2do Orden
import numpy as np

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras,
                   vertabla=False, precision = 6):
    ''' solucion a EDO con Runge-Kutta 2do Orden Segunda derivada,
        x0,y0 son valores iniciales, h es tamano de paso,
        muestras es la cantidad de puntos a calcular.
    '''
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,3+4),dtype=float)

    # incluye el punto [x0,y0,z0]
    tabla[0] = [x0,y0,z0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    i=0
    if vertabla==True:
        print('Runge-Kutta Segunda derivada')
        print('i ','[ xi,  yi,  zi',']')
        print('   [ K1y,  K1z,  K2y,  K2z ]')
        np.set_printoptions(precision)
        print(i,tabla[i,0:3])
        print('  ',tabla[i,3:])
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        tabla[i] = [xi,yi,zi,K1y,K1z,K2y,K2z]
        if vertabla==True:
            txt = ' '
            if i>=10:
                txt='  '
            print(str(i)+'',tabla[i,0:3])
            print(txt,tabla[i,3:])
    return(tabla)

# PROGRAMA ------------------

# INGRESO
# Parámetros de las ecuaciones
a = 0.5
b = 0.7
c = 0.35
d = 0.35

# Ecuaciones
f = lambda t,x,y : a*x -b*x*y
g = lambda t,x,y : -c*y + d*x*y

# Condiciones iniciales
t0 = 0
x0 = 2
y0 = 1

# parámetros del algoritmo
h = 0.5
muestras = 101

# PROCEDIMIENTO
tabla = rungekutta2_fg(f,g,t0,x0,y0,h,muestras,vertabla=True)
ti = tabla[:,0]
xi = tabla[:,1]
yi = tabla[:,2]

# SALIDA
print('Sistemas EDO: Modelo presa-predador')
##np.set_printoptions(precision=6)
##print(' [ ti, xi, yi]')
##print(tabla[:,0:4])

Los resultados numéricos se usan para generar las gráficas presentadas, añadiendo las instrucciones:

# GRAFICA tiempos vs población
import matplotlib.pyplot as plt

fig_t, (graf1,graf2) = plt.subplots(2)
fig_t.suptitle('Modelo predador-presa')
graf1.plot(ti,xi, color='blue',label='xi presa')

#graf1.set_xlabel('t tiempo')
graf1.set_ylabel('población x')
graf1.legend()
graf1.grid()

graf2.plot(ti,yi, color='orange',label='yi predador')
graf2.set_xlabel('t tiempo')
graf2.set_ylabel('población y')
graf2.legend()
graf2.grid()

# gráfica xi vs yi
fig_xy, graf3 = plt.subplots()
graf3.plot(xi,yi)

graf3.set_title('Modelo presa-predador [xi,yi]')
graf3.set_xlabel('x presa')
graf3.set_ylabel('y predador')
graf3.grid()
plt.show()

Sistemas EDO [ Ejercicio ] [ Analítico ] [ Algoritmo ] [ Runge Kutta  d2y/dx2 ]

6.2.2 EDO Runge-Kutta d2y/dx2 con Python

[ Runge Kutta  d2y/dx2 ] Algoritmo: [ RK 2do Orden ] [ RK 4to Orden] [ Ejercicio ]
..


1. EDO Runge-Kutta para Segunda derivada d2y/dx2

Para una ecuación diferencial de segunda derivada (segundo orden) con condiciones de inicio en x0, y0, y’0

\frac{\delta ^2 y}{\delta x^2} = \frac{\delta y}{\delta x} + etc

Forma estandarizada de la ecuación:

y'' = y' + etc

Se puede sustituir la variable y’ por z, lo que se convierte a dos expresiones que forman un sistema de ecuaciones:

\begin{cases} z= y' = f_x(x,y,z) \\ z' = (y')' = z + etc = g_x(x,y,z) \end{cases}

y se pueden reutilizar los métodos para primeras derivadas, por ejemplo Runge-Kutta de 2do y 4to orden para las variables x,y,z de forma simultanea.

Runge-Kutta 2do Orden tiene error de truncamiento O(h3)
Runge-Kutta 4do Orden tiene error de truncamiento O(h5)

[ Runge Kutta  d2y/dx2 ] Algoritmo: [ RK 2do Orden ] [ RK 4to Orden] [ Ejercicio ]

..


2. Runge-Kutta 2do Orden para Segunda derivada d2y/dx2 en Python

y'' = y' + etc \begin{cases} f_x(x,y,z) = z \\ g_x(x,y,z) = z + etc \end{cases} K_{1y} = h f(x_i, y_i, z_i) K_{1z} = hg(x_i, y_i, z_i) K_{2y} = h f(x_i +h, y_i + K_{1y} , z_i + K_{1z}) K_{2z} = h g(x_i +h, y_i + K_{1y}, z_i + K_{1z}) y_{i+1}=y_i+\frac{K_{1y}+K_{2y}}{2} z_{i+1}=z_i+\frac{K_{1z}+K_{2z}}{2} x_{i+1} = x_i +h
import numpy as np

def rungekutta2_fg(f,g,x0,y0,z0,h,muestras,
                   vertabla=False, precision = 6):
    ''' solucion a EDO con Runge-Kutta 2do Orden Segunda derivada,
        x0,y0 son valores iniciales, h es tamano de paso,
        muestras es la cantidad de puntos a calcular.
        f(x,y,z) = z #= y'
        g(x,y,z) = expresion con z=y'
    '''
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,3+4),dtype=float)

    # incluye el punto [x0,y0,z0,K1y,K1z,K2y,K2z]
    tabla[0] = [x0,y0,z0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    i=0
    if vertabla==True:
        print('Runge-Kutta Segunda derivada')
        print('i ','[ xi,  yi,  zi',']')
        print('   [ K1y,  K1z,  K2y,  K2z ]')
        np.set_printoptions(precision)
        print(i,tabla[i,0:3])
        print('  ',tabla[i,3:])
    for i in range(1,tamano,1):
        K1y = h * f(xi,yi,zi)
        K1z = h * g(xi,yi,zi)
        
        K2y = h * f(xi+h, yi + K1y, zi + K1z)
        K2z = h * g(xi+h, yi + K1y, zi + K1z)

        yi = yi + (K1y+K2y)/2
        zi = zi + (K1z+K2z)/2
        xi = xi + h
        
        tabla[i] = [xi,yi,zi,K1y,K1z,K2y,K2z]
        if vertabla==True:
            txt = ' '
            if i>=10:
                txt = '  '
            print(str(i)+'',tabla[i,0:3])
            print(txt,tabla[i,3:])
    return(tabla)

[ Runge Kutta  d2y/dx2 ] Algoritmo: [ RK 2do Orden ] [ RK 4to Orden] [ Ejercicio ]
..


3. Runge-Kutta 4do Orden para Segunda derivada d2y/dx2 en Python

import numpy as np

def rungekutta4_fg(fx,gx,x0,y0,z0,h,muestras):
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,3+8),dtype=float)

    # incluye el punto [x0,y0]
    tabla[0] = [x0,y0,z0,0,0,0,0,0,0,0,0]
    xi = x0
    yi = y0
    zi = z0
    
    for i in range(1,tamano,1):
        K1y = h * fx(xi,yi,zi)
        K1z = h * gx(xi,yi,zi)
        
        K2y = h * fx(xi+h/2, yi + K1y/2, zi + K1z/2)
        K2z = h * gx(xi+h/2, yi + K1y/2, zi + K1z/2)
        
        K3y = h * fx(xi+h/2, yi + K2y/2, zi + K2z/2)
        K3z = h * gx(xi+h/2, yi + K2y/2, zi + K2z/2)

        K4y = h * fx(xi+h, yi + K3y, zi + K3z)
        K4z = h * gx(xi+h, yi + K3y, zi + K3z)

        yi = yi + (K1y+2*K2y+2*K3y+K4y)/6
        zi = zi + (K1z+2*K2z+2*K3z+K4z)/6
        xi = xi + h
        
        tabla[i] = [xi,yi,zi,K1y,K1z,K2y,K2z,K3y,K3z,K4y,K4z]
    return(tabla)

[ Runge Kutta  d2y/dx2 ] Algoritmo: [ RK 2do Orden ] [ RK 4to Orden] [ Ejercicio ]
..


4. Ejercicio

2Eva_IT2018_T1 Paracaidista wingsuit

Solución Propuesta: s2Eva_IT2018_T1 Paracaidista wingsuit

otro ejercicio, una aplicación del algoritmo en Señales y Sistemas:

LTI CT – Respuesta entrada cero – Desarrollo analítico, TELG1001-Señales y Sistemas

[ Runge Kutta  d2y/dx2 ] Algoritmo: [ RK 2do Orden ] [ RK 4to Orden] [ Ejercicio ]

6.2.1 EDO Runge-Kutta 4to Orden dy/dx con Python

[ Runge Kutta 4to Orden ] [ Función ] [ Ejercicio en video ]

..


EDO Runge-Kutta 4to Orden de Primera derivada dy/dx

Referencia: Chapra 25.3.3 p746, Rodríguez 9.1.8 p358

Para una ecuación diferencial de primera derivada (primer orden) con una condición de inicio:
Runge Kutta 4to Orden

\frac{\delta y}{\delta x} + etc =0 y'(x) = f(x_i,y_i) y(x_0) = y_0

La fórmula de Runge-Kutta de 4to orden realiza una corrección con 4 valores de K:

y_{i+1} = y_i + \frac{K_1 + 2K_2 + 2K_3 + 1K_4}{6}

debe ser equivalente a la serie de Taylor de 5 términos:

y_{i+1} = y_i + h f(x_i,y_i) + + \frac{h^2}{2!} f'(x_i,y_i) + \frac{h^3}{3!} f''(x_i,y_i) + +\frac{h^4}{4!} f'''(x_i,y_i) + O(h^5) x_{i+1} = x_i + h

Runge-Kutta 4do Orden tiene error de truncamiento O(h5)

Ejercicio

Para el desarrollo analítico se tienen las siguientes expresiones para el ejercicio usado en Runge-Kutta de orden 2, que ahora será con orden 4:

f(x,y) = y' = y -x^2 +x +1

Se usa las expresiones de Runge-Kutta en orden, K1 corresponde a una corrección de EDO con Taylor de dos términos (método de Euler). K2 considera el cálculo a medio tamaño de paso más adelante.

iteración:

K_1 = h f(x_i,y_i) = 0.1 (y_i -x_i^2 +x_i +1) K_2 = h f\Big(x_i+\frac{h}{2}, y_i + \frac{K_1}{2} \Big) K_2 = 0.1 \Big(\big(y_i+\frac{K_1}{2}\big) -\big(x_i+\frac{h}{2}\big)^2 +\big(x_i+\frac{h}{2}\big) +1 \Big) K_3 = h f\Big(x_i+\frac{h}{2}, y_i + \frac{K_2}{2} \Big) K_3 = 0.1 \Big(\big(y_i+\frac{K_2}{2}\big) -\big(x_i+\frac{h}{2}\big)^2 +\big(x_i+\frac{h}{2}\big) +1 \Big) K_4 = h f(x_i+h, y_i + K_3 ) K_4 = 0.1 \Big((y_i+K_3) -(x_i+h)^2 +(x_i+h) +1 \Big) y_{i+1} = y_i + \frac{K_1+2K_2+2K_3+K_4}{6} x_{i+1} = x_i + h

Las iteraciones se dejan como tarea

[ Runge Kutta 4to Orden ] [ Función ] [ Ejercicio en video ]

..


Algoritmo en Python como Función

def rungekutta4(d1y,x0,y0,h,muestras, vertabla=False, precision=6):
    ''' solucion a EDO con Runge-Kutta 4do Orden primera derivada,
        x0,y0 son valores iniciales, tamaño de paso h.
        muestras es la cantidad de puntos a calcular.
    '''
    # Runge Kutta de 4do orden
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,2+4),dtype=float)
    
    # incluye el punto [x0,y0,K1,K2,K3,K4]
    tabla[0] = [x0,y0,0,0,0,0]
    xi = x0
    yi = y0
    for i in range(1,tamano,1):
        K1 = h * d1y(xi,yi)
        K2 = h * d1y(xi+h/2, yi + K1/2)
        K3 = h * d1y(xi+h/2, yi + K2/2)
        K4 = h * d1y(xi+h, yi + K3)

        yi = yi + (1/6)*(K1+2*K2+2*K3 +K4)
        xi = xi + h
        
        tabla[i] = [xi,yi,K1,K2,K3,K4]
        
    if vertabla==True:
        np.set_printoptions(precision)
        titulo = ' [xi,     yi,     K1,    K2,     K3,     K4 ]'
        print(' EDO con Runge-Kutta 4do Orden primera derivada')
        print(titulo)
        print(tabla)
    return(tabla)

Note que el método de Runge-Kutta de 4to orden es similar a la regla de Simpson 1/3. La ecuación representa un promedio ponderado para establecer la mejor pendiente.

[ Runge Kutta 4to Orden ] [ Función ] [ Ejercicio en video ]

..


Ejercicio

2Eva_IT2018_T1 Paracaidista wingsuit

Solución Propuesta: s2Eva_IT2018_T1 Paracaidista wingsuit

 

La segunda parte corresponde a Runge-Kutta de 4to Orden

[ Runge Kutta 4to Orden ] [ Función ] [ Ejercicio en video ]

6.2 EDO Runge-Kutta 2do Orden dy/dx con Python

[ Runge Kutta  dy/dx ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]
..


1. EDO Runge-Kutta 2do Orden para primera derivada dy/dx

Referencia: Burden 5.4 p209, Chapra 25.3 p740, Rodríguez 9.1.7 p354, Boyce DiPrima 4Ed 8.4 p450

Para una ecuación diferencial ordinaria de primera derivada, el método Runge-Kutta de 2do Orden usa una corrección sobre la derivada a partir de los puntos xi y xi+h,  es decir un tamaño de paso h hacia adelante, calculados como términos K1 y K2.

EDO Runge-Kutta 2do orden primera derivada _animado

Considere una ecuación diferencial de primera derivada con una condición de inicio se reordena y se escribe como f(x,y) siguiendo los pasos:

\frac{\delta y}{\delta x} + etc =0 y'(x) = f(x_i,y_i) y(x_0) = y_0

Los términos K1 y K2 se calculan para predecir el próximo valor en y[i+1], observe que el término K1 es el mismo que el método de Edo con Taylor de dos términos.

K_1 = h f(x_i,y_i) K_2 = h f(x_i+h, y_i + K_1) y_{i+1} = y_i + \frac{K_1+K_2}{2} x_{i+1} = x_i + h

Runge-Kutta 2do Orden 02

Runge-Kutta 2do Orden tiene error de truncamiento O(h3)

Las iteraciones se repiten para encontrar el siguiente punto en x[i+1] como se muestra en el gráfico animado.

Los métodos de Runge-Kutta  mejoran la aproximación a la respuesta de la ecuación diferencial ordinaria sin requerir determinar las expresiones de las derivadas de orden superior, como fue necesario en EDO con Taylor.

Para observar al idea básica, considere observar un combate aéreo simulado en la década de 1940, donde las armas se encuentras fijas en las alas del avión. Observe dos minutos del video sugerido a partir de donde se encuentra marcado el enlace.

Video Revisar:

Luego de observar el video de introducción conteste las siguientes preguntas:
¿ Que trayectoria siguen los proyectiles al salir del cañón?
¿ Que trayectoria siguen los aviones, el perseguido y el que caza?
¿ Cuál es la relación entre las trayectorias de los dos aviones?

Runge-Kutta 2do Orden primera derivada

[ Runge Kutta  dy/dx ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]
..


2. Ejercicio

Referencia: Rodríguez 9.1.1 ejemplo p335. Chapra 25.1.3 p731

Se pide encontrar puntos de la solución en la ecuación diferencial usando los tres primeros términos de la serie de Taylor con h=0.1 y punto inicial x0=0, y0=1

\frac{dy}{dx}-y -x +x^2 -1 = 0 y'-y -x +x^2 -1 = 0

[ Runge Kutta  dy/dx] [ Ejercicio ] [ Analítico ] [ Algoritmo ]
..


3. Desarrollo Analítico

Se reordena la expresión de forma que la derivada se encuentre en el lado izquierdo:

f(x,y) = y' = y -x^2 +x +1

Se usa las expresiones de Runge-Kutta en orden, K1 corresponde a una corrección de EDO con Taylor de dos términos (método de Euler). K2 considera el cálculo a un tamaño de paso más adelante. iteración:

K_1 = h f(x_i,y_i) = 0.1 (y_i -x_i^2 +x_i +1) K_2 = h f(x_i+h, y_i + K_1) K_2 = 0.1 \Big((y_i+K_1) -(x_i+h)^2 +(x_i+h) +1 \Big) y_{i+1} = y_i + \frac{K_1+K_2}{2} x_{i+1} = x_i + h

Runge-Kutta 2do Orden tiene error de truncamiento O(h3)

EDO Runge-Kutta 2do orden primera derivada _animado

para el ejercicio, el tamaño de paso h=0.1, se realizan tres iteraciones en las actividades del curso con lápiz y papel,

itera = 0 , x0 = 0, y0 = 1

K_1 = 0.1 f(0,1) = 0.1 \Big( 1 -0^2 +0 +1 \Big) = 0.2 K_2 = 0.1 f(0+0.1, 1+ 0.2) K_2 = 0.1 \Big( (1+ 0.2) - (0+0.1) ^2 +(0+0.1) +1\Big) = 0.229 y_1 = 1 + \frac{0.2+0.229}{2} = 1.2145 x_1 = 0 + 0.1 = 0.1

itera = 1 , x1 = 0.1, y1 = 1.2145

K_1 = 0.1 f(0.1,1.2145) = 0.1( 1.2145 -0.1^2 +0.1 +1) K_1 = 0.2304 K_2 = 0.1 f(0.1+0.1, 1.2145 + 0.2304) =0.1 \Big((1.2145 + 0.2304) -(0.1+0.1)^2 +(0.1+0.1) +1\Big) K_2 = 0.2604 y_2 = 1.2145 + \frac{0.2304+0.2604}{2} = 1.4599 x_2 = 0.1 +0.1 = 0.2

itera = 2 , x2 = 0.2, y2 = 1.4599

K_1 = 0.1 f(0.2,1.4599) = 0.1( 1.4599 -0.2^2 +0.2 +1) K_1 = 0.2619 K_2 = 0.1 f(0.2+0.1, 1.4599 + 0.2619) =0.1 \Big((1.4599 + 0.2619) -(0.2+0.1)^2 +(0.2+0.1) +1\Big) K_2 = 0.2931 y_2 = 1.4599 + \frac{0.2619+0.2931}{2} = 1.7375 x_2 = 0.2 +0.1 = 0.3

luego de las 3 iteraciones en papel, se completan los demás puntos con el algoritmo obteniendo la gráfica resultante para y(x) correspondiente.

EDO con Runge-Kutta 2 Orden
 [xi, yi, K1, K2]
[[0.         1.         0.         0.        ]
 [0.1        1.2145     0.2        0.229     ]
 [0.2        1.4599725  0.23045    0.260495  ]
 [0.3        1.73756961 0.26199725 0.29319698]
 [0.4        2.04856442 0.29475696 0.32723266]
 [0.5        2.39436369 0.32885644 0.36274209]]
>>> 

ecuación diferencial ordinaria con Runge-Kutta de 2do orden

Compare los resultados con Taylor de 2 y 3 términos.

Runge-Kutta 2do Orden tiene error de truncamiento O(h3)

[ Runge Kutta  dy/dx ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]
..


4. Algoritmo en Python

Se adjunta el programa de prueba que usa la función rungekutta2(d1y,x0,y0,h,muestras)  :

# EDO. Método de RungeKutta 2do Orden 
# estima la solucion para muestras espaciadas h en eje x
# valores iniciales x0,y0, entrega tabla[xi,yi,K1,K2]
import numpy as np

def rungekutta2(d1y,x0,y0,h,muestras):
    # Runge Kutta de 2do orden
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,2+2),dtype=float)
    
    # incluye el punto [x0,y0]
    tabla[0] = [x0,y0,0,0]
    xi = x0
    yi = y0
    for i in range(1,tamano,1):
        K1 = h * d1y(xi,yi)
        K2 = h * d1y(xi+h, yi + K1)

        yi = yi + (1/2)*(K1+K2)
        xi = xi + h
        
        tabla[i] = [xi,yi,K1,K2]
    return(tabla)
# PROGRAMA PRUEBA
# Ref Rodriguez 9.1.1 p335 ejemplo.
# prueba y'-y-x+(x**2)-1 =0, y(0)=1

# INGRESO
# d1y = y' = f, d2y = y'' = f'
d1y = lambda x,y: y -x**2 + x + 1
x0 = 0
y0 = 1
h  = 0.1
muestras = 5

# PROCEDIMIENTO
tabla = rungekutta2(d1y,x0,y0,h,muestras)
xi = tabla[:,0]
yiRK2 = tabla[:,1]

# SALIDA
# np.set_printoptions(precision=4)
print( 'EDO con Runge-Kutta 2 Orden')
print(' [xi, yi, K1, K2]')
print(tabla)

# Gráfica
import matplotlib.pyplot as plt
plt.plot(xi,yiRK2)
plt.plot(xi[0],yiRK2[0],
         'o',color='r', label ='[x0,y0]')
plt.plot(xi[1:],yiRK2[1:],
         'o',color='m',
         label ='[xi,yi] Runge-Kutta 2 Orden')

plt.title('EDO: Solución con Runge-Kutta 2do Orden')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.grid()
# plt.show() #comentar para la siguiente gráfica

[ Runge Kutta  dy/dx ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]


5. Cálculo de Error con la solución conocida

La ecuación diferencial ordinaria del ejercicio tiene una solución conocida, lo que permite encontrar el error real en cada punto respecto a la aproximación estimada.

y = e^x + x + x^2

EDO RungeKutta 2Orden 01

Note que el error crece al distanciarse del punto inicial.

Error máximo estimado:  0.004357584597315167
entre puntos: 
[0.         0.00067092 0.00143026 
 0.0022892  0.00326028 0.00435758]
>>>

Para las siguientes instrucciones, comente la última línea #plt.show() antes de continuar con:

# ERROR vs solución conocida -----------------
y_sol = lambda x: ((np.e)**x) + x + x**2

yi_psol  = y_sol(xi)
errores  = yi_psol - yiRK2
errormax = np.max(np.abs(errores))

# SALIDA
print('Error máximo estimado: ',errormax)
print('entre puntos: ')
print(errores)

# GRAFICA [a,b+2*h]
a = x0
b = h*muestras+2*h
muestreo = 10*muestras+2
xis = np.linspace(a,b,muestreo)
yis = y_sol(xis)

plt.plot(xis,yis, label='y solución conocida',
         linestyle='dashed')
plt.legend()
plt.show()

[ Runge Kutta  dy/dx ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]


6. Ejercicio de Evaluación

2Eva_IT2018_T1 Paracaidista wingsuit

Solución Propuesta: s2Eva_IT2018_T1 Paracaidista wingsuit , Runge-Rutta para primera derivada.

6.1 EDO con Taylor de 3 términos con Python

[ EDO Taylor ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]
..


1. Ecuaciones diferenciales ordinarias aproximadas con Taylor

Referencia: Rodríguez 9.1.1 ejemplo p335. Chapra 25.1.3 p731

En los métodos con Taylor para Ecuaciones Diferenciales Ordinarias (EDO) se aproxima el resultado a n términos de la serie, para lo cual se ajusta la expresión del problema a cada derivada correspondiente.

La solución empieza usando la Serie de Taylor para tres términos ajustada a la variable del ejercicio:

y_{i+1} = y_{i} + h y'_i + \frac{h^2}{2!} y''_i x_{i+1} = x_{i} + h E = \frac{h^3}{3!} y'''(z) = O(h^3)

Edo Taylor 3 términos GIF animado
A partir de la expresión de y'(x) y el punto inicial conocido en x[i],se busca obtener el próximo valor en x[i+1] al avanzar un tamaño de paso h. Se repite el proceso en el siguiente punto encontrado y se continua hasta alcanzar el intervalo objetivo.

EDO Taylor 3 terminos

En éstos métodos la solución siempre es una tabla de puntos xi,yi que se pueden usar para interpolar y obtener una función polinómica.

[ EDO Taylor ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]

..


2. Ejercicio

Referencia: Rodríguez 9.1.1 ejemplo p335. Chapra 25.1.3 p731

Se requiere encontrar puntos de la solución en la ecuación diferencial usando los tres primeros términos de la serie de Taylor con h=0.1 y punto inicial x0=0, y0=1

\frac{dy}{dx}-y -x +x^2 -1 = 0

que con nomenclatura simplificada:

y'-y -x +x^2 -1 = 0

[ EDO Taylor ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]
..


3. Desarrollo Analítico

Al despejar el valor de  y’ de expresión del ejercicio,

y' = y -x^2 +x +1

se puede obtener y" al derivar una vez,

y'' = y' -2x + 1

para luego combinar las expresiones en

y'' = (y -x^2 +x +1) -2x + 1

simplificando:

y'' = y -x^2 -x +2

Ecuaciones que permiten estimar nuevos valores yi+1 para nuevos puntos  muestra distanciados en i*h desde el punto inicial siguiendo las siguientes expresiones de iteración:

y'_i = y_i -x_i^2 + x_i +1 y''_i = y_i -x_i^2 - x_i +2 y_{i+1} = y_{i} + h y'_i + \frac{h^2}{2!} y''_i x_{i+1} = x_{i} + h

Edo Taylor 3 términos GIF animado

Se empieza evaluando el nuevo punto a una distancia x1= x0+h del punto de origen con lo que se obtiene y1 , repitiendo el proceso para el siguiente punto en forma sucesiva.

itera = 0 , x0 = 0, y0 = 1

y'_0 = 1 -0^2 +0 +1 = 2 y''_0 = 1 -0^2 -0 +2 = 3 y_1 = y_{0} + h y'_0 + \frac{h^2}{2!} y''_0 y_1 = 1 + 0.1 (2) + \frac{0.1^2}{2!} 3 = 1.215 x_1 = 0 + 0.1

itera = 1 , x = 0.1, y = 1.215

y'_1 = 1.215 - 0.1^2 + 0.1 +1 = 2.305 y''_1 = 1.215 - 0.1^2 - 0.1 +2 = 3.105 y_2 = 1.215 + 0.1 (2.305) + \frac{0.1^2}{2!} 3.105 = 1.461 x_2 = 0.1 + 0.1 = 0.2

itera = 2 , x = 0.2, y = 1.461

y'_2 = 1.461 - 0.2^2 + 0.2 +1 = 2.621 y''_2 = 1.461 - 0.2^2 - 0.2 +2 = 3.221 y_3 = 1.461 + 0.1 (2.621) + \frac{0.1^2}{2!} 3.221 = 1.7392 x_3 = 0.2 + 0.1 = 0.3

completando los puntos con el algoritmo y realizando la gráfica se obtiene

 EDO con Taylor 3 términos
[xi, yi, d1yi, d2yi]
[[0.         1.         0.         0.        ]
 [0.1        1.215      2.         3.        ]
 [0.2        1.461025   2.305      3.105     ]
 [0.3        1.73923262 2.621025   3.221025  ]
 [0.4        2.05090205 2.94923262 3.34923262]
 [0.5        2.39744677 3.29090205 3.49090205]]
>>>

Observación, note que los resultados de las derivadas, se encuentran desplazados una fila para cada iteración. Asunto a ser considerado en la gráfica de las derivadas en caso de incluirlas.

EDO_Taylor_3terminos01

Nota: Compare luego los pasos del algoritmo con el método de Runge-Kutta de 2do orden.

[ EDO Taylor ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]
..


4. Algoritmo en Python

Para simplificar los cálculos se crea una función edo_taylor3t() para encontrar  los valores para una cantidad de muestras distanciadas entre si h veces del punto inicial [x0,y0]

# EDO. Método de Taylor con3 términos 
# estima solucion para muestras separadas h en eje x
# valores iniciales x0,y0
import numpy as np

def edo_taylor3t(d1y,d2y,x0,y0,h,muestras):
    ''' solucion a EDO usando tres términos de Taylor, x0,y0 son valores iniciales
        muestras es la cantidad de puntos a calcular con tamaño de paso h.
    '''
    tamano = muestras + 1
    tabla = np.zeros(shape=(tamano,4),dtype=float)
    # incluye el punto [x0,y0]
    tabla[0] = [x0,y0,0,0]
    x = x0
    y = y0
    for i in range(1,tamano,1):
        d1yi = d1y(x,y)
        d2yi = d2y(x,y)
        y = y + h*d1yi + ((h**2)/2)*d2yi
        x = x + h
        tabla[i] = [x,y,d1yi,d2yi]
    return(tabla)

# PROGRAMA PRUEBA -----------------
# Ref Rodriguez 9.1.1 p335 ejemplo.
# prueba y'-y-x+(x**2)-1 =0, y(0)=1

# INGRESO.
# d1y = y', d2y = y''
d1y = lambda x,y: y - x**2 + x + 1
d2y = lambda x,y: y - x**2 - x + 2
x0 = 0
y0 = 1
h = 0.1
muestras = 5

# PROCEDIMIENTO
tabla = edo_taylor3t(d1y,d2y,x0,y0,h,muestras)
xi = tabla[:,0]
yi = tabla[:,1]

# SALIDA
print(' EDO con Taylor 3 términos')
print('[xi, yi, d1yi, d2yi]')
print(tabla)

# Gráfica
import matplotlib.pyplot as plt
plt.plot(xi,yi)
plt.plot(xi[0],yi[0],'o', color='r', label ='[x0,y0]')
plt.plot(xi[1:],yi[1:],'o', color='g', label ='y estimada')
plt.title('EDO: Solución con Taylor 3 términos')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.grid()
plt.show() # plt.show() #comentar para la siguiente gráfica

Tarea: Realizar el ejercicio con más puntos muestra, donde se visualice que el error aumenta al aumentar la distancia del punto inicial [x0,y0]

[ EDO Taylor ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]


5. Cálculo de Error con la solución conocida

La ecuación diferencial ordinaria del ejercicio tiene una solución conocida, lo que permite encontrar el error real en cada punto respecto a la aproximación estimada.

y = e^x + x + x^2

Note que el error crece al distanciarse del punto inicial

Para las siguientes instrucciones, comente la última línea #plt.show() antes de continuar con:

# ERROR vs solución conocida
y_sol = lambda x: ((np.e)**x) + x + x**2

yi_psol = y_sol(xi)
errores = yi_psol - yi
errormax = np.max(np.abs(errores))

# SALIDA
print('Error máximo estimado: ',errormax)
print('entre puntos: ')
print(errores)

# GRAFICA [a,b+2*h]
a = x0
b = h*muestras+2*h
muestreo = 10*muestras+2
xis = np.linspace(a,b,muestreo)
yis = y_sol(xis)

plt.plot(xis,yis,linestyle='dashed', label='y solución conocida')
plt.legend()
plt.show()

Se puede observar los siguientes resultados:

Error máximo estimado:  0.0012745047595
entre puntos: 
[ 0.  0.000170  0.000377  0.000626  0.000922  0.00127 ]

[ EDO Taylor ] [ Ejercicio ] [ Analítico ] [ Algoritmo ]

5.6 Diferenciación numérica – Tablas con diferencias divididas

Diferencias Divididas [ hacia adelante ] [ centradas ] [hacia atrás] ..


Referencia: Chapra Fig.23.1 p669, Burden 4.1 p167, Rodríguez 8.2,3,4,6 p324

Diferencias divididas hacia adelante

Primera derivada

f'(x_i) = \frac{f(x_{i+1})-f(x_i)}{h} + O(h) f'(x_i) = \frac{-f(x_{i+2})+4f(x_{i+1})-3f(x_i)}{2h} + O(h^2)

Segunda derivada

f''(x_i) = \frac{f(x_{i+2})-2f(x_{i+1})+f(x_i)}{h^2} + O(h) f''(x_i) = \frac{-f(x_{i+3})+4f(x_{i+2})-5f(x_{i+1})+2f(x_i)}{h^2} + O(h^2)

Tercera derivada

f'''(x_i) = \frac{f(x_{i+3})-3f(x_{i+2})+3f(x_{i+1})-f(x_i)}{h^3} + O(h) f'''(x_i) = \frac{-3f(x_{i+4})+14f(x_{i+3})-24f(x_{i+2})+18f(x_{i+1})-5f(x_i)}{2h^3} + O(h^2)

Cuarta derivada

f''''(x_i) = \frac{f(x_{i+4})-4f(x_{i+3})+6f(x_{i+2})-4f(x_{i+1})+f(x_i)}{h^3} + O(h)

Diferencias Divididas [ hacia adelante ] [ centradas ] [hacia atrás]

..


Diferencias divididas centradas

Primera derivada

f'(x_i) = \frac{f(x_{i+1})-f(x_{i-1})}{2h} + O(h^2) f'(x_i) = \frac{-f(x_{i+2})+8f(x_{i+1})-8f(x_{i-1}) +f(x_{i-2})}{12h} + O(h^4)

Segunda derivada

f''(x_i) = \frac{f(x_{i+1})-2f(x_{i})+f(x_{i-1})}{h^2} + O(h^2) f''(x_i) = \frac{-f(x_{i+2})+16f(x_{i+1})-30f(x_{i})+16f(x_{i-1})-f(x_{i-2})}{12h^2} + O(h^4)

Tercera derivada

f'''(x_i) = \frac{f(x_{i+2})-2f(x_{i+1})+2f(x_{i-1})-f(x_{i-2})}{2h^3} + O(h^2) f'''(x_i) = \frac{-f(x_{i+3})+8f(x_{i+2})-13f(x_{i+1})+13f(x_{i-1})-8f(x_{i-2})+f(x_{i-3})}{8h^3} + O(h^4)

Diferencias Divididas [ hacia adelante ] [ centradas ] [hacia atrás]

..


Diferencias divididas hacia atrás

Primera derivada

f'(x_i) = \frac{f(x_{i})-f(x_{i-1})}{h} + O(h) f'(x_i) = \frac{3f(x_{i})-4f(x_{i-1})+f(x_{i-2})}{2h} + O(h^2)

Segunda derivada

f''(x_i) = \frac{f(x_{i})-2f(x_{i-1})+f(x_{i-2})}{h^2} + O(h) f''(x_i) = \frac{2f(x_{i})-5f(x_{i-1})+4f(x_{i-2})-f(x_{i-3})}{h^2} + O(h^2)

Tercera derivada

f'''(x_i) = \frac{f(x_{i})-3f(x_{i-1})+3f(x_{i-2})-f(x_{i-3})}{h^3} + O(h) f'''(x_i) = \frac{5f(x_{i})-18f(x_{i-1})+24f(x_{i-2})-14f(x_{i-3})+3f(x_{i-4})}{2h^3} + O(h^2)

Diferencias Divididas [ hacia adelante ] [ centradas ] [hacia atrás]

5.5 Diferenciación numérica

Diferencias Divididas [ hacia adelante ] [ centradas ]

Referencia: Chapra 23.1 p668 pdf692, Rodriguez 8.2 p324

Como referencia, el polinomio de Taylor muestra una aproximación de una función f(x):

P_{n}(x) = f(x_0)+\frac{f'(x_0)}{1!} (x-x_0) + + \frac{f''(x_0)}{2!}(x-x_0)^2 + ...

Diferencias Divididas [ hacia adelante ] [ centradas ]

..


Primera Derivada con Diferencias divididas hacia adelante

Una aproximación a primera derivada, usa los primeros dos términos del polinomio de Taylor alrededor de xi en para un punto a la derecha xi+1 a una distancia h = xi+1xi

f(x_{i+1}) = f(x_i)+\frac{f'(x_i)}{1!} (h) + \frac{f''(x_i)}{2!}(h)^2 + ...

se puede simplificar en un polinomio de grado uno y un término de error:

f_{i+1} = f_i + (h)f'_i + O(h^2) ...

Despejando la expresión para f’i


f'_i = \frac{f_{i+1}-f_i}{h} = \frac{\Delta f_i}{h}

La expresión también es la primera diferencia finita dividida con un error del orden O(h). (tema usado en interpolación).

Revise que el término de la expresión queda O(h2)/h con lo que se disminuye el exponente en uno.

Diferencias Divididas [ hacia adelante ] [ centradas ]

..


Primera derivada con diferencias divididas centradas

Se realiza el mismo procedimiento que el anterior, usando un punto xi+1 y xi-1 alrededor de xi. En el término xi-1 el valor de h es negativo al invertir el orden de la resta.

f_{i+1} = f_i+\frac{f'_i}{1!}(h) + \frac{f''_i}{2!}(h)^2 + O(h^3) ... f_{i-1} = f_i-\frac{f'_i}{1!}(h) + \frac{f''_i}{2!}(h)^2

restando la ecuaciones se tiene que

f_{i+1} - f_{i-1} = (h)f'_i +(h)f'_i f_{i+1} - f_{i-1} = 2h f'_i

La expresión de primera derivada usando un punto antes y otro después del punto central queda como:


f'_i = \frac{f_{i+1} - f_{i-1}}{2h}

con un error del orden O(h2)

Diferencias Divididas [ hacia adelante ] [ centradas ]


Segundas derivadas

Al continuar con el procedimiento mostrado se pueden obtener las fórmulas para segundas derivadas, las que se resumen en las tablas de Fórmulas de diferenciación por diferencias divididas.

5.4.1 Cuadratura con dos puntos – Experimento con Python

[ Cuadratura de Gauss ] [ Experimento 2 puntos ] [ Experimento algoritmo ]
..


Cuadratura con dos puntos – Experimento

Para visualizar el concepto de Cuadratura de Gauss de dos puntos considere lo siguiente:

Se tiene un corte transversal del un recipiente rectangular lleno de líquido limitado en x entre [-1,1], al que se le ha depositado encima otro recipiente con perfil f(x) = x2 hasta que reposan sus extremos en x[-1,1].

La altura de ambos recipientes es la misma.

La superficie entre f(x) y el eje x es el integral de f(x) en el intervalo.

Si suponemos que la figura es el corte transversal de una vasija y la parte en amarillo es líquida, la vasija ha desplazado el líquido que ocupa ahora el «área» mostrada en la gráfica que corresponde al integral de f(x)=x2. entre [-1,1].

Ahora, suponga que se perfora el perfil de f(x) en dos puntos equidistantes cercanos  x=0. Los orificios permitirían el desplazamiento del liquido al interior de f(x) que dejando pasar suficiente tiempo, permitiría tener todo el líquido en el recipiente rectangular entre [-1,1] como una línea horizontal.

Podría medir la altura que tiene el líquido y que tiene un equivalente en un punto f(x1). Debería encontrar el valor de x1 que permite disponer del mismo valor entre el área debajo de f(x) y el rectángulo del corte transversal amarillo ahora formado.

Se usa el resultado analítico del integral restando el área del rectángulo obtenido al evaluar la función f(x) entre [0,1], teniendo un problema de búsqueda de raíces. Obtenemos el valor de x1.

Se muestra que el área bajo f(x) es equivalente al área del rectángulo conformado.

Si  utilizamos el desplazamiento horizontal desde el centro para un punto encontrado como un «factor», tendremos que el área del rectángulo se mantendría equivalente, y el desplazamiento proporcional a la mitad del intervalo si se varía el intervalo de observación. Este factor coincide con el factor de Cuadratura de Gauss de dos puntos.

funcion  fx:   x**2
Integral Fx:   x**3/3
I analitico:   0.6666666666666666
I aproximado:  0.6666666666654123
desplaza centro:   0.5773502691890826
factor desplaza:   0.5773502691890826
Factor CuadGauss:  0.5773502691896258
erradoFactor:    1.2545520178264269e-12
error integral:  1.2543299732215019e-12

El error del integral es del orden de 10-12


Cambiamos la figura geométrica a un trapecio generado por la recta que pasa por los puntos xi desplazados desde el centro.

Usamos la función f(x) = x2 + x + 1, observaremos si los resultado son equivalentes.

La figura al inicio del experimento será:

Luego de realizar realizar el mismo cálculo anterior usando un equivalente a trapecio se tiene:

con valores numéricos:

funcion  fx:   x**2 + x + 1
Integral Fx:   x**3/3 + x**2/2 + x
I analitico:   2.6666666666666665
I aproximado:  2.6666666666654124
desplaza centro:   0.5773502691890826
factor desplaza:   0.5773502691890826
Factor CuadGauss:  0.5773502691896258
erradoFactor:    1.2545520178264269e-12
error integral:  1.2541079286165768e-12

El error del integral es también del orden de 10-12, además observe que el factor de cuadratura de Gauss se mantiene.

[ Cuadratura de Gauss ] [ Experimento 2 puntos ] [ Experimento algoritmo ]


Tarea

Realice el experimento usando un polinomio de grado superior y observe los errores para el integral y las diferencia con el coeficiente de Cuadratura de 2 puntos.

[ Cuadratura de Gauss ] [ Experimento 2 puntos ] [ Experimento algoritmo ]

..


Algoritmo con Python

Para resumir la cantidad de instrucciones, se usa el método de la bisección desde la librería Scipy y el subgrupo de funciones de optimización.

Los cálculos para realizar las gráficas se tratan en un bloque luego de mostrar los resultado principales.

# Integración: Cuadratura de Gauss de dos puntos
# modelo con varios tramos entre [a,b]
# para un solo segmento.
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
import scipy.optimize as op

# INGRESO
x = sym.Symbol('x')

# fx = (x)**2
fx = x**2 + x + 1
# fx = 0.2 + 25.0*x-200*(x**2)+675.0*(x**3)-900.0*(x**4)+400.0*(x**5)

a = -1
b = 1
muestras = 51
tolera = 1e-12
iteramax = 100

# PROCEDIMIENTO
# Desarrollo analítico con Sympy
Fx = sym.integrate(fx,x)
Fxn = sym.lambdify('x',Fx,'numpy')
Fiab = Fxn(b)-Fxn(a)

# Busca igualar trapecio con Integral analitico
fxn = sym.lambdify('x',fx,'numpy')
base = b-a
mitad = base/2
xc = (a+b)/2  # centro
diferencia = lambda x: Fiab-base*(fxn(xc-x)+fxn(xc+x))/2
desplazado =  op.bisect(diferencia,0,mitad,
                        xtol=tolera,maxiter=iteramax)
factor = desplazado/mitad

# Integral aproximando con trapecio
x0 = xc - factor*mitad
x1 = xc + factor*mitad
Faprox = base*(fxn(x0)+fxn(x1))/2

# Integral cuadratura Gauss
xa = xc + mitad/np.sqrt(3)
xb = xc - mitad/np.sqrt(3)
FcuadG = base*(fxn(xa)+fxn(xb))/2
erradofactor = np.abs(FcuadG - Faprox)
erradoIntegral = np.abs(Fiab-Faprox)
# SALIDA
print('funcion  fx:  ', fx)
print('Integral Fx:  ', Fx)
print('I analitico:  ', Fiab)
print('I aproximado: ', Faprox)
print('desplaza centro:  ', desplazado)
print('factor desplaza:  ', factor)
print('Factor CuadGauss: ', 1/np.sqrt(3))
print('erradoFactor:   ', erradofactor)
print('error integral: ', erradoIntegral) 

# Grafica
# Para GRAFICAR 
# Para gráfica f(x)
xi = np.linspace(a,b,muestras)
fi = fxn(xi)

# Para gráfica Trapecio
m = (fxn(x1)-fxn(x0))/(x1-x0)
trapeciof = lambda x: fxn(x0)+m*(x-x0)
trapecioi = trapeciof(xi)

# Areas Trapecio para cada punto que busca
k = int(muestras/2)
xicg = xi[k:muestras-1]
Fcg = [base*(fxn(xi[k+0])+fxn(xi[k-0]))/2]
for i in range(1,k,1):
    untrapecio = base*(fxn(xi[k+i])+fxn(xi[k-i]))/2
    Fcg.append(untrapecio)

# Punto buscado
Fiaprox = base*(fxn(x1)+fxn(x0))/2

Fi = Fxn(xi)-Fxn(a)

# Areas de curvas y trapecio

plt.subplot(211) # Grafica superior
plt.xlim(a,b)
plt.plot(xi, fi, label='f(x)')
# Solo fi
# plt.fill_between(xi,0, fi,
#                label='integral fi',
#                 color='yellow')
# usando cuadratura
plt.fill_between(xi,0, trapecioi,
                 label='Cuadratura 2 puntos',
                 color='yellow')
plt.axvline(x0,color='white')
plt.axvline(x1,color='white')
plt.plot([x0,x1],[fxn(x0),fxn(x1)],
         'ro', label='x0,x1')
plt.axvline(0,color='black')
plt.xlabel('x')
plt.ylabel('f(x) y Cuadratura de 2 puntos')
plt.legend()

# Valores de integrales
plt.subplot(212) # Grafica inferior
plt.xlim(a,b)
plt.axhline(Fiab, label='F[a,b]')
# plt.plot(xi,Fi,label='F(x)')
plt.plot(xicg,Fcg,color='orange',label='Aprox Trapecio')

plt.axvline(x1,color='yellow')
plt.axvline((1/np.sqrt(3))*(b-a)/2 + xc ,color='magenta')
plt.plot(x1,Fiaprox,'ro', label='x0,x1')
plt.axvline(0,color='black')

plt.xlabel('x')
plt.legend()
plt.ylabel('Integrando')
plt.show()

[ Cuadratura de Gauss ] [ Experimento 2 puntos ] [ Experimento algoritmo ]

5.4 Cuadratura de Gauss con Python

[ Cuadratura de Gauss ] [ Ejercicio ] [Algoritmo/función Python]

..


Cuadratura de Gauss

Referencia: Chapra 22.3 p655, Rodríguez 7.3 p294, Burden 4.7 p168

La cuadratura de Gauss aproxima el integral de una función en un intervalo [a,b] centrado en cero mediante un cálculo numérico con menos operaciones y evaluaciones de la función. Se representa como una suma ponderada:

I \cong \Big( \frac{b-a}{2} \Big)\Big(c_0f(x_a) + c_1f(x_b)\Big)

para la fórmula de dos puntos con referencia a una función centrada en cero y ancho unitario a cada lado, se tiene:

c_0 = c_1 = 1, x_0 = -\frac{1}{\sqrt{3}}, x_1 = \frac{1}{\sqrt{3}}

Para un intervalo de evaluación desplazado en el eje x se requiere convertir los puntos al nuevo intervalo. Se desplaza el punto cero al centro del intervalo [a,b] y se corrige el desplazamiento hacia la izquierda y derecha del centro con x0 y x1.

regla Cuad Gauss 02

x_a = \frac{b+a}{2} - \frac{b-a}{2}\Big(\frac{1}{\sqrt{3}} \Big) x_b = \frac{b+a}{2} + \frac{b-a}{2}\Big(\frac{1}{\sqrt{3}} \Big)

con lo que el resultado aproximado del integral se convierte en:

I \cong \frac{b-a}{2}(f(x_a) + f(x_b))

cuya fórmula es semejante a una mejor aproximación de un trapecio, cuyos promedios de alturas son puntos internos de [a,b], concepto mostrado en la gráfica.

[ Cuadratura de Gauss ] [ Ejercicio ] [Algoritmo/función Python]

..


Ejercicio

Para el ejercicio y comparación de resultado con los otros métodos, se realiza el cálculo para un tramo en el intervalo [a,b].

\int_1^3 \sqrt{x} \sin(x) dx x_a = \frac{3+1}{2} + \frac{3-1}{2}\Big(\frac{1}{\sqrt{3}}\Big)= 1.4226 x_b = \frac{3+1}{2} + \frac{3-1}{2}\Big(\frac{1}{\sqrt{3}} \Big) = 2.5773 f(1.4226) = \sqrt{1.4226} \sin(1.4226) = 1.1796 f(2.5773) = \sqrt{2.5773} \sin(2.5773) = 0.8585

con lo que el resultado aproximado del integral se convierte en:

I \cong \frac{3-1}{2}(1.1796 + 0.8585) = 2.0382

que usando instrucciones de Python para obtener los valores:

>>> import numpy as np
>>> (3+1)/2-(3-1)/2*(1/np.sqrt(3))
1.4226497308103743
>>> (3+1)/2+(3-1)/2*(1/np.sqrt(3))
2.5773502691896257
>>> fx = lambda x: np.sqrt(x)*np.sin(x)
>>> fx(1.4226)
1.1796544827404145
>>> fx(2.5773)
0.8585957175067221
>>> ((3-1)/2)*(fx(1.4226)+fx(2.5773))
2.0382

el resultado se puede mejorar aumentando el número de tramos en el intervalo [a,b]. Por ejemplo, el resultado usando 4 tramos el resultado es semejante al usar el método del trapecio con 128 tramos, lo que muestra el ahorro en cálculos entre los métodos

Integral:  2.05357719003
>>> 

Concepto:

Ejercicio:

[ Cuadratura de Gauss ] [ Ejercicio ] [Algoritmo/función Python]

..


Algoritmo con Python

Para el ejercicio anterior, usando al 4 segmentos y en cada uno aplicando Cuadratura de Gauss, el integral resultante es:

[xa,xb,f(xa),f(xb)]
[1.1056624327025935, 1.3943375672974065, 0.9397945621004238, 1.1624843542124732]
[xa,xb,f(xa),f(xb)]
[1.6056624327025935, 1.8943375672974065, 1.2663772374235445, 1.3049381813350678]
[xa,xb,f(xa),f(xb)]
[2.1056624327025935, 2.3943375672974065, 1.2484263248036183, 1.0516320347815513]
[xa,xb,f(xa),f(xb)]
[2.6056624327025935, 2.8943375672974065, 0.8242800855599416, 0.4163759798980186]
Integral:  2.0535771900286597

Instrucciones en Python usando la Cuadratura de Gauss de dos puntos para una función f(x):

# Integración: Cuadratura de Gauss de dos puntos
# modelo con varios tramos entre [a,b]
import numpy as np
import matplotlib.pyplot as plt

# cuadratura de Gauss de dos puntos
def integraCuadGauss2p(fx,a,b, vertabla=False):
    ''' funcion fx, intervalo[a,b]
        vertabla=True para ver resultados parciales 
    '''
    x0 = -1/np.sqrt(3)
    x1 = -x0
    xa = (b+a)/2 + (b-a)/2*(x0)
    xb = (b+a)/2 + (b-a)/2*(x1)
    area = ((b-a)/2)*(fx(xa) + fx(xb))
    if vertabla==True:
        print('[xa,xb,f(xa),f(xb)]')
        print([xa,xb,fx(xa),fx(xb)])
    return(area)

# INGRESO
fx = lambda x: np.sqrt(x)*np.sin(x)

# intervalo de integración
a = 1
b = 3
tramos = 4

# PROCEDIMIENTO
muestras = tramos+1
xi = np.linspace(a,b,muestras)
area = 0
for i in range(0,muestras-1,1):
    deltaA = integraCuadGauss2p(fx,xi[i],xi[i+1],vertabla=True)
    area = area + deltaA
# SALIDA
print('Integral: ', area)

Gráfica por tramos

La gráfica que complementa el resultado anterior, se realiza añadiendo las instrucciones presentadas a continuación.

Considere que la gráfica es útil con pocos tramos en el intervalo[a,b]

# GRAFICAR por cada Segmento/tramo
# para concepto con 'pocos' segmentos
subtramo = xi
muestrastramo = 10
x0 = -1/np.sqrt(3) 
x1 = 1/np.sqrt(3)

# gráficas de todos los tramos
aj = [] ; bj = []
xj = [] ; fj = []
recta = []

for i in range(0,tramos,1):
    ai = subtramo[i]
    bi = subtramo[i+1]
    
    xk = np.linspace(ai,bi,muestrastramo)
    fk = fx(xk)
    
    xj = xj + list(xk)
    fj = fj + list(fk)

    # puntos xa y xb por tramo
    xa = (bi+ai)/2 + (bi-ai)/2*(x0)
    xb = (bi+ai)/2 + (bi-ai)/2*(x1)
    
    aj.append(xa)
    bj.append(xb)
    
    # Recta entre puntos x0 y x1 por tramo
    m = (fx(xb)-fx(xa))/(xb-xa)
    b0 = fx(xa) - m*xa
    linea = b0 + m*xk
    recta = recta + list(linea)

# Marcadores 'o' de xa y xb por tramos
puntox = np.concatenate((aj,bj))
puntoy = fx(puntox)

# Trazado de lineas
plt.plot(xj,recta, label = 'grado 1', color = 'tab:orange')
plt.fill_between(xj,0,recta, color='tab:olive')
plt.plot(xj,fj, label='f(x)', color = 'blue')

# Verticales para dividir los tramos
for i in range(0,len(subtramo),1):
    plt.axvline(subtramo[i], color='tab:gray')
    
# Marcadores de puntos xa y xb por tramos
for j in range(0,len(aj),1):
    plt.axvline(aj[j], color='w')
    plt.axvline(bj[j], color='w')
plt.plot(puntox,puntoy, 'o', color='g')

plt.title('Integral: Cuadratura Gauss')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.legend()

plt.show()

[ Cuadratura de Gauss ] [ Ejercicio ] [Algoritmo/función Python]


Referencia: Tabla 22.1 Chapra p661

Para un integral con intervalo centrado en el origen.

I \cong c_0 f(x_0) + c_1f(x_1) + … + c_{n-1}f(x_{n-1})
Factores usados en las fórmulas de Gauss-Legendre.
Puntos Factor de ponderación Argumentos de la función Error de truncamiento
2 c0 = 1.0000000
c1 = 1.0000000
x0 = – 0.577350269
x1 = 0.577350269
≅ f(4)(x )
3 c0 = 0.5555556
c1 = 0.8888889
c2 = 0.5555556
x0 = – 0.774596669
x1 = 0.0
x2 = 0.774596669
≅ f(6)(x )
4 c0 = 0.3478548
c1 = 0.6521452
c2 = 0.6521452
c3 = 0.3478548
x0 = – 0.861136312
x1 = – 0.339981044
x2 = 0.339981044
x3 = 0.861136312
≅f (8)(x )