3Eva_IT2011_T1 Trazador cúbico

3ra Evaluación I Término 2011-2012. 13/Septiembre/2011. ICM00158

Tema 1. Determinar el trazador cúbico correspondiente, con los siguientes datos:

f(1) = 1
f(1.5) = 1.625
f(2) = 2.5
f'(1) = 1
f'(2) =  2

Luego aproximar la función en los puntos:  f(1.25) y f(1.75) .


datos = [[1  , 1    ],
         [1.5, 1.625],
         [2  , 2.5  ]]

2Eva_IIT2011_T3_MN Trazador cúbico

2da Evaluación II Término 2011-2012. 31/Enero/2012. ICM02188 Métodos Numéricos

Tema 3. (40 puntos) Dados los puntos

(x,y): (2,3), (4,4), (5,6), (6,7), (8,5)

Use el trazador cúbico natural para determinar el valor de y cuando x=3.

Use el método iterativo de Gauss-Seidel para resolver el sistema de ecuaciones que se produce al aplicar la formulación del trazador cúbico.

Comience con un vector solución nulo e itere hasta obtener tres decimales exactos.


xi = [ 2, 4, 5, 6, 8]
yi = [ 3, 4, 6, 7, 5]

2Eva_IIT2011_T2_MN Profundidad en lago

2da Evaluación II Término 2011-2012. 31/Enero/2012. ICM02188 Métodos Numéricos

Tema 2. (30 puntos) Utilizando los 9 datos de las cuadrículas centrales de la tabla anterior, calcule aproximadamente la profundidad del lago en el punto de coordenadas x = 250, y = 125

Utilice en ambas direcciones el polinomio de Lagrange o el polinomio de diferencias finitas y estime el error en la interpolación.

 y\x  0 100 200 300 400
 0  0  0  4  6  0
 50  0  3  5  7  3
 100  1  5  6  9  5
 150  0  2  3  5  1
 200  0  0  1  2  0

profundidad= [[ 0, 0, 4, 6, 0],
              [ 0, 3, 5, 7, 3],
              [ 1, 5, 6, 9, 5],
              [ 0, 2, 3, 5, 1],
              [ 0, 0, 1, 2, 0]]

x = [ 0, 100, 200, 300, 400]
y = [ 0,  50, 100, 150, 200]

2Eva_IT2011_T3_MN Aproxime integral

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 3. Con respecto a los datos del Tema 2, aproxime la integral de g(x) con el método de la cuadratura de Gauss de dos términos usando n = 1, 2, 3 subintervalos.

Con éstos resultados estime la precisión de la respuesta del integral.

Previamente debe usar los datos para aproximar g(x) mediante un polinomio de interpolación.

2Eva_IT2011_T1_MN Ganancias anual

2da Evaluación I Término 2011-2012. 29/Agosto/2011. ICM02188 Métodos Numéricos

Tema 1. La siguiente tabla indica la ganancia neta g, medida en millones de dólares, de una empresa multinacional con respeto al tiempo t medido en años.

t  1 2 4 5
g 6.4 6.2 7.4  7.2

a. Encuentre el polinomio de interpolación que incluye a los cuatro puntos. Trace el gráfico aproximado de los puntos y del polinomio.

b. Con el polinomio encuentre la ganancia cuando t=3

c. Con el polinomio enuentre t cuando la ganancia fué de 7.0 millones de dólares.

d. Con el polinomio encuentre el monto y el tiempo correspondientes a la mayor ganancia.


t = [ 1  , 2  , 4  , 5  ]
g = [ 6.4, 6.2, 7.4, 7.2]

3Eva_IIT2010_T1 Trazador cúbico sujeto

3ra Evaluación II Término 2010-2011. 15/Febrero/2011. ICM00158

Tema 1. Dados los valores de una función y sus derivadas en los extremos,

f(0)= 1.5
f(1/2) = 1.37758
f(1) = 1.0403

f'(0) = 0
f'(1) = – 0.84147

determinar el trazador cúbico sujeto y luego aproximar la función en los puntos x=0.2 y x=0.8


fxi = [[  0, 1.5    ],
       [1/2, 1.37758],
       [  1, 1.0403 ]]

3Eva_IIT2009_T1 Ladera submarina

3ra Evaluación II Término 2009-2010. 23/Febrero/2010. ICM00158

Tema 1. (25 puntos) Para aproximar la profundidad de una ladera submarina se han hecho mediciones, las cuales relacionan la profundidad de la ladera, expresada en m, con la distancia respecto a la orilla, expresada en km.

Ladera submarina

Empleando los datos que se dan a continuación, construya el trazador cúbico natural para aproximar la profundidad de la ladera a 1.5 km respecto a la orilla.

Distancia a orilla 0 1 2 3
Profundidad ladera 1 170 235 320

Escriba el sistema de ecuaciones del cual se obtienen los valores de ci.


distancia = [ 0, 1, 2, 3]
profundidad = [ 1, 170, 235, 320]

Referencias:
EEUU vierte arena en playas de Miami Beach erosionadas por el cambio climático | AFP

https://www.youtube.com/watch?v=BbYVuXT_MEk

3Eva_IT2009_T1 Trazador cúbico fijo

3ra Evaluación I Término 2009-2010. 15/Septiembre/2009. ICM00158

Tema 1.  (25 puntos) Dado los valores de una función, construir el trazador cúbico fijo.

f(0) = 1,
f(0.25) = 1.14012
f(0.5) = 1.32436
f(0.75) = 1.5585

y con las derivadas, f'(0) = 0.5, f'(0.75) = 1.0585

a. Establecer el sistema para determinar los valores de ci

b. Aproximar f(0.15) y f(0.6)

Rúbrica: Sistema de ecuaciones (7.5 puntos), polinómios cúbicos (10 puntos), aproximación correcta de los puntos (7.5 puntos)


datos = [[0, 1],
         [0.25, 1.14012],
         [0.5 , 1.32436],
         [0.75, 1.5585 ]]

3Eva_IIT2008_T1_MN Entrenamiento en empresa

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM02188 Métodos Numéricos

Tema 1. (40 puntos) En los siguientes datos (x, f(x)), x representa el tiempo en horas de entrenamiento que realizaron 4 empleados de una empresa y f(x) representa su eficiencia actual para realizar cierta tarea (tiempo en minutos):

(0.0, 4.0), (2.0, 3.6), (4.0, 2.8), (6.0, 2.5)

a. Use el polinomio de interpolación de tercer grado para estimar la eficiencia (tiempo en minutos) si el entrenamiento es 5 horas.

b. Use el polinomio de interpolación de tercer grado para estimar el tiempo de entrenamiento que se requiere para que la eficiencia sea exactamente 3.0 minutos.


datos = [[0.0, 4.0], 
         [2.0, 3.6], 
         [4.0, 2.8], 
         [6.0, 2.5]]

3Eva_IIT2008_T2 Potencia de tracción

3ra Evaluación II Término 2008-2009. 3/Marzo/2009. ICM00158


Tema 2. Un servomecanismo presenta la potencia de tracción en función del ángulo de elevación como se indica en la tabla.

a. Construya el trazador cúbico natural

b. Aproxime la potencia cuando el ángulo es 35 grados, y determine el error de interpolación.

Elevación (grados)  20 30 40 50 60
Potencia (Joules/s) 34,202 50,000 64,279 76,604 86,603

elevacion = [ 20, 30, 40, 50, 60]
potencia  = [34202, 50000, 64279, 76604, 86603]

Referencia:
COMO HACEN LOS BRAZOS ROBOTICOS Discovery MAX