2Eva2016TII_T1 LTI CT - diseñar filtro paso alto HPF

2da Evaluación II Término 2016-2017. 16/Febrero/2017. TELG1001

Tema 1. (28 puntos) La señal z(t) a la salida de un multiplicador se aplica como señal de entrada o excitación a un filtro ideal de frecuencias selectivas, tal como se muestra en la siguiente figura.

a. Determinar, esquematizar y etiquetar el espectro de la transformada de Fourier de z(t), es decir Z(ω) vs ω.

b. Diseñar un filtro ideal de paso alto (HPF), indicando las características que debería tener dicho filtro para que a su salida se pueda obtener como respuesta la señal y(t) = 4cos(1200πt). Determine la relación Py(t)/Px(t).

c. Usando propiedades de la transformada de Fourier, obtener la respuesta impulso h(t) de dicho filtro de paso alto.


Coordinador: Tama Alberto

2Eva2012TI_T3 LTI DT causal, coeficientes de respuesta impulso h[n]

2da Evaluación I Término 2012-2013. 30/Agosto/2012. TELG1001

Tema 3. (30 puntos) Un estudiante de la materia Sistemas Lineales ha determinado que una de las raíces características del sistema LTI-DT causal, que muestra en la siguiente figura, es γ = 1/4, y cuya ecuación de diferencias que relaciona la entrada-salida del mismo está dada por:

y[n] - \frac{5}{4} y[n-1] + \frac{1}{36} y[n-2] + \frac{1}{18} y[n-3] = x[n] - \frac{1}{2} x[n-1]

Determinar:

a. La respuesta impulso h[n] del sistema. Su respuesta deber ser de la forma:

h[n] = a \alpha^n \mu [n] + b \beta^n \mu[n] + c \gamma^n \mu [n]

obtenga entonces los valores pertinentes.

a= b= c=
α= β= γ=

b. ¿Es el sistema BIBO estable?, justifique su respuesta.


s2Eva2012TI_T3 LTI DT causal, coeficientes de respuesta impulso h[n]

Ejercicio: 2Eva2012TI_T3 LTI DT causal, coeficientes de respuesta impulso h[n]

La ecuación de diferencias descrita se usa para crear el diagrama de bloques.

y[n] - \frac{5}{4} y[n-1] + \frac{1}{36} y[n-2] + \frac{1}{18} y[n-3] = x[n] - \frac{1}{2} x[n-1]

literal a. Respuesta impulso h[n]

La forma para usar transformadas z requiere que se desplazar tres unidades.

y[n+3] - \frac{5}{4} y[n+2] + \frac{1}{36} y[n+1] + \frac{1}{18} y[n] = x[n+3] - \frac{1}{2} x[n+2] z^3 Y[z] - \frac{5}{4} z^2 Y[z] + \frac{1}{36} z Y[z] + \frac{1}{18} Y[z] = z^3X[z] - \frac{1}{2} z^2 X[z] (z^3 - \frac{5}{4} z^2 + \frac{1}{36} z + \frac{1}{18}) Y[z] = (z^3 - \frac{1}{2} z^2) X[z] H[z] = \frac{Y[z]}{X[z]} = \frac{z^3 - \frac{1}{2} z^2}{z^3 - \frac{5}{4} z^2 + \frac{1}{36} z + \frac{1}{18}}

las raíces del denominador obtenidas con Sympy-Python:

>>> sym.roots(Pz)
{1/2: 1, 0: 2}
>>> sym.factor(Pz)
z**2*(2*z - 1)/2
>>> sym.factor(Qz)
(4*z - 1)*(9*z**2 - 9*z - 2)/36
>>> sym.roots(Qz)
{1/4: 1, 1/2 - sqrt(17)/6: 1, 1/2 + sqrt(17)/6: 1}
>>> 

Observación: existe una raíz con distancia al origen superior al radio=1, por lo que habría un termino creciente no acotado.

2Eva2012TI_T3 graf Hz polos01

que se observa también como:

2Eva2012TI_T3 graf Hz polos02

El modelo se puede plantear como:

H[z] = \frac{z^2\Big(z-\frac{1}{2}\Big)}{\Big(z-\frac{1}{4}\Big)\Big(z^2-z-\frac{2}{9}\Big)}

para usar fracciones parciales modificadas, se multiplica cada lado por 1/z:

\frac{H[z]}{z} = \frac{z\Big(z-\frac{1}{2}\Big)}{\Big(z-\frac{1}{4}\Big)\Big(z^2-z-\frac{2}{9}\Big)}

Se puede plantear un modelo de respuesta por cada raíz como:

\frac{H[z]}{z} = \frac{k1}{z-\frac{1}{4}}+\frac{k_2 z +k_3}{z^2-z-\frac{2}{9}}

usando el método de Heaviside,

k_1 = \frac{z\Big(z-\frac{1}{2}\Big)}{\cancel{\Big(z-\frac{1}{4}\Big)}\Big(z^2-z-\frac{2}{9}\Big)}\Big|_{z=\frac{1}{4}} k_1 = \frac{\frac{1}{4}\Big(\frac{1}{4}-\frac{1}{2}\Big)}{\Big(\frac{1}{4}^2-\frac{1}{4}-\frac{2}{9}\Big)} k_1 = -\frac{1}{16}\frac{1}{\frac{(4)(9)-(16)(9)-(2)(16)(4)}{(16)(4)(9)}} =\frac{36}{236}

con lo que ahora en la expresión se convierte en:

\frac{H[z]}{z} = \frac{z\Big(z-\frac{1}{2}\Big)}{\Big(z-\frac{1}{4}\Big)\Big(z^2-z-\frac{2}{9}\Big)} =\frac{\frac{36}{236}}{z-\frac{1}{4}}+\frac{k_2 z +K_3}{z^2-z-\frac{2}{9}} =

Usando el método de los factores cuadráticos, se multiplica ambos lados por z y z→∞

\frac{H[z]}{z} z = \frac{z^2\Big(z-\frac{1}{2}\Big)}{\Big(z-\frac{1}{4}\Big)\Big(z^2-z-\frac{2}{9}\Big)} =\frac{\frac{36}{236}z}{z-\frac{1}{4}}+z\frac{k_2 z +K_3}{z^2-z-\frac{2}{9}} =

se divide numerador y denominador del lado izquierdo para 1/z3 y el lado derecho el primer termino 1/z y el segundo termino 1/z2

\frac{\Big(1-\frac{1}{2}\frac{1}{z}\Big)}{\Big(1-\frac{1}{4}\frac{1}{z}\Big)\Big(1-\frac{1}{z}-\frac{2}{9}\frac{1}{z^2}\Big)} =\frac{\frac{36}{236}}{1-\frac{1}{4}\frac{1}{z}}+\frac{k_2 +K_3\frac{1}{z}}{1-\frac{1}{z}-\frac{2}{9}\frac{1}{z}}

y cuando z→∞

\frac{\Big(1-\frac{1}{2}(0)\Big)}{\Big(1-\frac{1}{4}(0)\Big)\Big(1-(0)-\frac{2}{9}(0)\Big)} =\frac{\frac{36}{236}}{1-\frac{1}{4}(0)}+\frac{k_2 +K_3(0)}{1-(0)-\frac{2}{9}(0)} 1 =\frac{36}{236}+k_2 k_2 = 1-\frac{36}{236}=\frac{200}{236} = \frac{50}{59}

con lo que K2=50/59 , para encontrar K3 se usa un valor conveniente de z=0

H[0] = \frac{(0)\Big((0)-\frac{1}{2}\Big)}{\Big((0)-\frac{1}{4}\Big)\Big((0)^2-(0)-\frac{2}{9}\Big)} =\frac{\frac{36}{236}}{(0)-\frac{1}{4}}+\frac{\frac{50}{59}(0) +K_3}{(0)^2-(0)-\frac{2}{9}} = 0 =\frac{\frac{36}{236}}{-\frac{1}{4}}+\frac{K_3}{-\frac{2}{9}} = K_3 = \frac{2}{9}\frac{\frac{36}{236}}{-\frac{1}{4}} = -4\frac{2}{9}\frac{36}{236} = -\frac{8}{59} \frac{H[z]}{z} = \frac{36}{236}\frac{1}{z-\frac{1}{4}}+\frac{50/59 z -8/59}{z^2-z-\frac{2}{9}} = \frac{H[z]}{z} = \frac{36}{236}\frac{1}{z-\frac{1}{4}}+\frac{2}{59}\frac{25 z -4}{z^2-z-\frac{2}{9}}

y restaurando en fracciones parciales al multiplicar por z cada lado

H[z] = \frac{9}{59}\frac{z}{z-\frac{1}{4}}+\frac{2}{59}\frac{z(25 z -4)}{z^2-z-\frac{2}{9}}

los valores no se ajustan al modelo planteado en el enunciado, y existe un polo con radio>1, por lo que el sistema es creciente,y otro polo en posición r<0.

h[n] = a \alpha^n \mu [n] + b \beta^n \mu[n] + c \gamma^n \mu [n]

obtenga entonces los valores pertinentes.

a= 9/59 = 0.1525 b= ... creciente sin cota, con polo mayor a 1 c=... con polo negativo, lo que es un término con signo alternado.
α= 1/4 = 0.25 β = 1/2 + np.sqrt(17)/6 = 1.1871842709362768 γ = 1/2 - np.sqrt(17)/6 = -0.18718427093627676

Resultados iniciales con el algoritmo

Se encuentra que hay un término que no se puede usar para encontrar la transformada z.

 Hz:
            2      
       3   z       
      z  - --      
           2       
-------------------
        2          
 3   5*z    z    1 
z  - ---- + -- + --
      4     36   18

 Hz en fracciones parciales
50*z*(z - 4/25)       9*z     
--------------- + ------------
   / 2       2\   59*(z - 1/4)
59*|z  - z - -|               
   \         9/               

 Hz en factores
               2                       
              z *(z - 0.5)             
---------------------------------------
           / 2                        \
(z - 0.25)*\z  - z - 0.222222222222222/

 {Q_polos:veces}: {1/4: 1, 1/2 - sqrt(17)/6: 1, 1/2 + sqrt(17)/6: 1}
 {P_ceros:veces}: {1/2: 1, 0: 2}

parametros cuadraticos: 
 termino: 50*z*(z - 4/25)/(59*(z**2 - z - 2/9))
r : 120.72788283210394
gamma : None
beta : None
theta : None

estabilidad asintótica en z:
circ1_dentro : 2
circ1_repetidos : 0
circ1_sobre : 0
circ1_fuera : 1
unicos : 3
repetidos : 0
asintota : inestable

 h[n]:
   -n             
9*4  *Heaviside(n)
------------------
        59        
revisar terminos sin transformada de tabla:
50*z*(z - 4/25)/(59*(z**2 - z - 2/9))

señal discreta h[n]
n   : [0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
h[n]: [1.52542373e-01 3.81355932e-02 9.53389831e-03 2.38347458e-03
 5.95868644e-04 1.48967161e-04 3.72417903e-05 9.31044756e-06
 2.32761189e-06 5.81902973e-07]

Instrucciones en Python

Desarrollo con las expresiones iniciales, sin corrección sobre los parámetros que se indican en el enunciado.

Nota: cuando se produzca el siguiente error con Numpy para evaluar una expresión con exponente negativo,

Traceback (most recent call last):
  File "D:\MATG1052Ejemplos\Transformadaz\ejercicio03.py", line 93, in 
    fi  = f_n(ki)
  File "", line 2, in _lambdifygenerated
    return (9/59)*4**(-n)*Heaviside(n, 1/2)
ValueError: Integers to negative integer powers are not allowed.

proceda actualizando los valores a evaluar como tipo real (dtype float), tan solo usando en la línea de ki con lo siguiente:

ki  = np.arange(0,muestras_fn,1.0)

quedando las instrucciones de la siguiente forma, que si evalúa valores para realizar gráficas.

# Transformada z- Fracciones parciales
# https://blog.espol.edu.ec/telg1001/lti-dt-transformada-z-xz-fracciones-parciales-con-python/
import numpy as np
import sympy as sym
import matplotlib.pyplot as plt
import telg1001 as fcnm
#sym.SYMPY_DEBUG=True

# INGRESO
z = sym.Symbol('z')
n = sym.Symbol('n', real=True)

# coeficientes como racional en dominio 'ZZ' enteros
a0 = sym.Rational(1,2)
a1 = sym.Rational(5,4)
a2 = sym.Rational(1,36)
a3 = sym.Rational(1,18)

Pz = z**3-a0*z**2
Qz = z**3-a1*z**2+a2*z+a3

F = Pz/Qz

# para graficar
f_nombre = 'H'    # nombre de función[z]: H,X,Y, etc
muestras_fn = 10  # muestras para f[n]

# PROCEDIMIENTO
Fz  = fcnm.apart_z(F)
Fz_factor = sym.factor(F.evalf())
Fz_factor = fcnm._round_float_is_int(Fz_factor)

# polos y ceros de Hz
[P,Q] = F.as_numer_denom()
P = sym.poly(P,z)
Q = sym.poly(Q,z)
P_ceros = sym.roots(P)
Q_polos = sym.roots(Q)

estable_z = fcnm.estabilidad_asintotica_z(Q_polos)

# Inversa de transformada z
fn = 0*n ; f_noeval = 0*n ; Qz2_term =[]
term_sum = sym.Add.make_args(Fz)
for term_k in term_sum:
    term_kn = fcnm.inverse_z_transform(term_k,z,n)
    if type(term_kn)==tuple:
        fn = fn + term_kn[0]
    elif term_kn is not None:
        fn = fn + term_kn
    elif term_kn is None:
        f_noeval = f_noeval + term_k
    Qz2 = fcnm.Q_cuad_z_parametros(term_k)
    if Qz2:
        Qz2_term.append(Qz2)
fn = fn.collect(sym.Heaviside(n))
fn = fn.collect(sym.DiracDelta(n))

# SALIDA
print('\n '+f_nombre+'z:')
sym.pprint(F)
print('\n '+f_nombre+'z en fracciones parciales')
sym.pprint(Fz)
print('\n '+f_nombre+'z en factores')
sym.pprint(Fz_factor)
print('\n {Q_polos:veces}:',Q_polos)
print(' {P_ceros:veces}:',P_ceros)
if len(Qz2_term)>0:
    print('\nparametros cuadraticos: ')
    for i in range(0,len(Qz2_term),1):
        for unterm in Qz2_term[i]:
            print(' termino:',unterm)
            fcnm.print_resultado_dict(Qz2_term[i][unterm])
print('\nestabilidad asintótica en z:')
fcnm.print_resultado_dict(estable_z)
print('\n '+f_nombre.lower()+'[n]:')
sym.pprint(fn)
if not f_noeval==sym.S.Zero:
    print('revisar terminos sin transformada de tabla:')
    print(f_noeval)

# # GRAFICA  -----------
fig_ROC = fcnm.graficar_Fz_polos(Fz_factor,Q_polos,P_ceros,
                      muestras=101,f_nombre=f_nombre)

fig_Fz = fcnm.graficar_Fs(Fz_factor,Q_polos,P_ceros,
                     muestras=101,
                     f_nombre=f_nombre)

# graficar f[n] -------
f_n = sym.lambdify(n,fn.expand(),modules=fcnm.equivalentes)
ki  = np.arange(0,muestras_fn,1.0)
fi  = f_n(ki)

print('\nseñal discreta '+f_nombre.lower()+'[n]')
print('n   :',ki)
print(f_nombre.lower()+'[n]:',fi)

# graficar f[n]
fig_fn, grafxn = plt.subplots()
plt.axvline(0,color='grey')
plt.stem(ki,fi)
plt.grid()
plt.xlabel('n')
plt.ylabel(f_nombre.lower()+'[n]')
etiqueta = r''+f_nombre.lower()+'[n]= $'+str(sym.latex(fn))+'$'
plt.title(etiqueta)

plt.show()

 

2Eva2012TI_T1 LTI CT con entrada cosenoidal

2da Evaluación I Término 2012-2013. 30/Agosto/2012. TELG1001

Tema 1. (40 puntos) Considere el sistema mostrado en la siguiente figura, donde la respuesta impulso h(t) está dada por:

h(t) = \frac{\sin (10 \pi t)}{\pi t}

x(t) = \sum_{k=1}^{\infty} \frac{1}{k^2} \cos (5 k\pi t) g(t) = \sum_{k=1}^{10} \cos (8 k \pi t)

a. Determinar la energía contenida en la señal h(t).

b. Determinar, esquematizar y etiquetar el espectro de Fourier de la señal m(t). Es decir M(ω) vs ω.

c. Determinar, esquematizar y etiquetar el espectro de Fourier de la señal n(t). Es decir N(ω) vs ω.

d. Determinar la potencia de la señal de salida y(t) y la representación de su espetro de Series de Fourier complejas exponenciales. Indique también el orden de los armónicos que están presentes en dicha salida.


Coordinador: Tama Alberto

 

2Eva2012TII_T3 LTI CT en dominio de frecuencias

2da Evaluación II Término 2012-2013. 31/Enero/2013. TELG1001

Tema 3. (35 puntos) Considerar la existencia del sistema mostrado en la siguiente figura, donde el espectro de Fourier de la respuesta impulso h(t) es H(ω).

a. Determinar, esquematizar y etiquetar el espectro de Fourier de x(t), es decir X(ω) vs ω.

b. Determinar la expresión analítica de q(t), como una función de x(t).

c. Determinar, esquematizar y etiquetar los espectros de Fourier de las señales g(t), p(t) y q(t), es decir G(ω), P(ω) y Q(ω) respectivamente.

d. Determinar, esquematizar y etiquetar el espectro de Fourier de y(t), es decir Y(ω) vs ω.

e. Expresar la salida y(t) como una función de x(t).

f. Hallar la energía de la señal de salida y(t), es decir Ey(t).


Coordinador: Tama Alberto

2Eva2012TII_T2 LTI CT armónicos de serie de Fourier

2da Evaluación II Término 2012-2013. 31/Enero/2013. TELG1001

Tema 2. (20 puntos) La siguiente figura muestra el espectro de los coeficientes complejos exponenciales de la serie de Fourier de una señal periódica x(t)

a. Por simple inspección, determine las Series de Fourier complejas exponenciales que representan a x(t)

b. Por simple inspección, esquematice adecuadamente el espectro de los coeficientes de Fourier para la representación armónica (trigonometría compacta).

c. Mediante la aplicación del Teorema de Parseval, determinar la potencia de la señal periódica x(t).


Coordinador: Tama Alberto

2Eva2012TII_T1 LTI CT respuesta impulso

2da Evaluación II Término 2012-2013. 31/Enero/2013. TELG1001

Tema 1. (20 puntos) Un sistema LTIC-CT con respuesta de frecuencia H(ω) es excitado con una entrada x(t) cuyos espectros de Fourier se muestran en la siguiente figura.

a. Determinar la respuesta impulso h(t) y obtener el valor de la energía Eh(t) del mencionado sistema.

b. Determinar, esquematizar y etiquetar la transformada de Fourier de y(t), es decir Y(ω) y ontener el valor de la energía de y(t), es decir Ey(t)

Un estudiante de la materia de Sistemas Lineales ha observado que la salida q(t) del sistema mostrado a continuación, es la señal y(t) obtenida en el literal anterior,

c. Siendo así, determine, esquematice y etiquete la transformada de Fourier de p(t), es decir P(ω) y encuentre el valor ω0.


Coordinador: Tama Alberto

2Eva2011TI_T5 X(ω) transformar a x(t)

2da Evaluación I Término 2011-2011. 1/Septiembre/2011. TELG1001

Tema 5. (14 puntos) Para la representación espectral que se muestra a continuación, determinar:

a. La inversa de la transformada de Fourier de X(ω). Es decir x(t)

b. la energía contenida en la señal  x(t)


Coordinador: Tama Alberto