3Eva2010TII_T3 LTI DT h[n] por ecuación de diferencias

3ra Evaluación II Término 2010-2011. 17/febrero/2011. TELG1001

Tema 3. (25 puntos) Un estudiante de la materia Sistemas Lineales ha determinado que la ecuación de diferencias que relaciona la entrada-salida del LTI-DT causal, es aquella que se muestra en la siguiente figura.

y[n] - 1.6y[n-1] + 0.63 y[n-2] = 4 x[n-1] - 4 x[n-2]

Determinar:

a. La función de transferencia H(z) del mencionado sistema, esquematizando en el plan complejo sus polos y ceros.

b. El tipo de estabilidad (interna y externa) del sistema, justificando debidamente su respuesta.

c. La respuesta impulso h[n] del sistema.

d. La respuesta que generaría dicho sistema, si la excitación es una sinusoide muestreada cos(1500t) con un intervalo de muestreo de Ts= 0.0015.

e. El diagrama de bloques en su forma canónica (DFII) que representa la realización del referido sitema LTI-DT causal.


Referencia: 2Eva2010TI_T1 LTID Bloques de H[z] para ecuación de diferencias

3Eva2010TII_T2 LTI CT modulación

3ra Evaluación II Término 2010-2011. 17/febrero/2011. TELG1001

Tema 2. (30 puntos) Considere el sistema LTI-CT, cuya respuesta al impulso unitario δ(t) es h(t), tal como se especifica en la siguiente figura.

x(t) = 2\frac{\sin (3 \pi t)}{\pi t} w(t) = \frac{\sin (2 \pi t)}{\pi t} q(t) = \cos (5 \pi t) h(t) = \frac{\sin (\pi t)}{\pi t}

Determinar, esquematizar y etiquetar según corresponda lo siguiente:

a. El espectro de Fourier de la señal g(t). Es decir G(ω) vs ω.

b. El espectro de Fourier de la respuesta impulso h(t). Es decir H(ω) vs ω.

c. El espectro de Fourier de la señal c(t). Es decir C(ω) vs ω.

d. El espectro de Fourier de la señal de salida y(t). Es decir Y(ω) vs ω.


Coordinador: Tama Alberto

3Eva2010TII_T1 LTI CT muestreado

3ra Evaluación II Término 2010-2011. 17/febrero/2011. TELG1001

Tema 1. (25 puntos) Un estudiante de la materia Sistemas Lineales ha determinado que la respuesta a impulso h(t) de un sistema LTI-CT, es aquella que se especifica en la siguiente figura.

Si el referido sistema es excitado con la señal periódica x(t) cuya representación mediante coeficientes complejos de Fourier es:

Dk = j δ[k-1] - j δ[k+1] +  δ[k-3] + δ[k+3]

ω0 = 2π

Determinar, esquematizar y etiquetar según corresponda lo siguiente:

a. La expresión analítica de la señal de entrada x(t) y su potencia.

b. El espectro de Fourier de la señal de entrada x(t), esto es X(ω) vs ω.

c. El espectro de Fourier de la señal de entrada h(t), esto es H(ω) vs ω.

d. La expresión analítica de la salida y(t) y su potencia.


Coordinador: Tama Alberto

3Eva2009TII_T3 LTI CT entrada modulada usando Fourier

3ra Evaluación II Término 2009-2010. 18/Febrero/2010. TELG1001

Tema 3. (20 puntos) Para el sistema mostrado en la figura, determinar:

a. La Transformada de Fourier de las señales x1(t) y x2(t), es decir X1(ω) y X2(ω), esquematizando el respectivo espectro de Fourier.

b. La transformada de Fourier de la señal z(t), es decir Z(ω), esquematizando el respectivo espectro de Fourier para cuando a=1 y ω0=2.

c. La transformada de Fourier de la señal y(t), es decir Y(ω), esquematizando su espectro de magnitud y fase para cuando a=1 y ω0=2.

3Eva2009TII_T2 LTI DT H(z) con subsistemas de bloques en serie

3ra Evaluación II Término 2009-2010. 18/Febrero/2010. TELG1001

Tema 2. (20 puntos) El sistema que se muestra en la siguiente figura, es el resultante de la combinación de dos subsistemas conectados en cascada. Determinar:

a. Las respuestas impulso de cada subsistema y del sistema completo. Es decir h1[n], h2[n], h[n].

b. Su respuesta y[n], en la forma de mínima expresión, frente a la siguiente entrada:

x[n] = δ[n] - 2 δ[n-1]

3Eva2009TII_T1 LTI CT respuesta a filtro H(jω)

3ra Evaluación II Término 2009-2010. 18/Febrero/2010. TELG1001

Tema 1. (20 puntos) Una señal de entrada sinusoidal x(t) = cos(10t) es muestreada y filtrada tal como se aprecia en la siguiente figura:

Donde la respuesta de frecuencia del filtro está dada por:

|H(j \omega)| = \begin {cases} 1 , 90 <|\omega|<180 \\ 0, \text{en otro caso}\end{cases} \angle H(j \omega) = - \frac{\pi \omega}{200}

a. Suponiendo que

s(t) = \sum_{k=-\infty}^{\infty} \delta(t-kT) T= \frac{2 \pi}{90}

Determinar, esquematizar y etiquetar la Transformada de Fourier de la señal z(t). Es decir Z(jω).

b. Determinar la respuesta del sistema, es decir, y(t)