Convolución de Sumas – Tabla

Referencia: Lathi Tabla 3.1 p285

γ1γ2 \gamma_1 \neq \gamma_2
No x1[n] x2[n] x1[n]⊗x2[n] = x2[n]⊗x1[n]
1 δ[n-k] x[n] x[n-k]
2 γnμ[n] \gamma^{n} \mu[n] μ[n] 1γn+11γμ[n]\frac{1-\gamma^{n+1}}{1-\gamma} \mu[n]
3 μ[n] μ[n] (n+1) μ[n]
4 γ1nμ[n] \gamma_1^{n} \mu[n] γ2nμ[n] \gamma_2^{n} \mu[n] γ1n+1γ2n+1γ1γ2μ[n]\frac{\gamma_1^{n+1} - \gamma_2^{n+1}}{\gamma_1 - \gamma_2} \mu[n]
5 γ1nμ[n] \gamma_1^{n} \mu[n] γ2nμ[(n+1)] \gamma_2^{n} \mu[-(n+1) ] γ1γ2γ1γ1nμ[n]+\frac{\gamma_1}{\gamma_2 - \gamma_1} \gamma_1^{n} \mu[n] +
+γ2γ2γ1γ2nμ[(n+1)]+ \frac{\gamma_2}{\gamma_2 - \gamma_1} \gamma_2^{n} \mu[-(n+1)]
γ2>γ1 |\gamma_2| > |\gamma_1|
6 nγ1nμ[n] n\gamma_1^{n} \mu[n] γ2nμ[n] \gamma_2^{n} \mu[n] γ1γ2(γ1γ2)2[γ2nγ1n+γ1γ2γ2nγ1n]μ[n]\frac{\gamma_1 \gamma_2}{(\gamma_1 - \gamma_2)^2} \Big[ \gamma_2^{n} - \gamma_1^{n} + \frac{\gamma_1 - \gamma_2}{\gamma_2}n \gamma_1^n \Big] \mu [n]
γ1γ2 \gamma_1\neq \gamma_2
7 n μ[n] n μ[n] 16n(n1)(n+1)μ[n] \frac{1}{6} n (n-1) (n+1) \mu [n]
8 γnμ[n] \gamma^{n} \mu[n] γnμ[n] \gamma^{n} \mu[n] (n+1)γnμ[n] (n+1) \gamma^{n} \mu[n]
9 γnμ[n] \gamma^{n} \mu[n] nμ[n] n \mu[n] [γ(γn1)+n(1γ)(1γ)2]μ[n] \Big[ \frac{\gamma(\gamma^{n}-1)+n(1-\gamma)}{(1-\gamma)^2} \Big] \mu[n]
10 γ1ncos(βn+θ)μ[k] |\gamma_1|^{n} \cos (\beta n + \theta) \mu [k] γ2nμ[n] |\gamma_2|^{n}\mu [n] 1R[γ1n+1cos[β(n+1)+θϕ]γ2n+1cos(θϕ)]μ[n] \frac{1}{R} \Big[ |\gamma_1|^{n+1} \cos [\beta (n+1) +\theta -\phi] -\gamma_2 ^{n+1} \cos (\theta - \phi) \Big] \mu[n]
R=[γ12+γ222γ1γ2cos(β)]12 R=\Big[|\gamma_1|^2 + \gamma_2^2 -2|\gamma_1|\gamma_2 \cos(\beta) \Big]^{\frac{1}{2}}

ϕ=tan1[γ1sin(β)γ1cos(β)γ2]\phi = \tan ^{-1} \Big[ \frac{|\gamma_1| \sin(\beta)}{|\gamma_1| \cos (\beta) -\gamma_2} \Big]

11 μ[n]\mu [n] nμ[n]n\mu [n] n(n+1)2μ[n]\frac{n(n+1)}{2}\mu [n]