s1Eva2009TII_T3 LTI CT y(t) desde h(t) y x(t) con términos escalón desplazados

Ejercicio: 1Eva2009TII_T3 LTI CT y(t) desde h(t) y x(t) con términos escalón desplazados

La función de transferencia h(t) y la señal de entrada x(t) son,

x(t) = 2 μ(t-1) – 2 μ(t-3)

h(t) = μ(t+1) – 2 μ(t-1) + μ(t-3)

La primera observación es que h(t) h(t) tiene un componente No causal, que se adelanta en tiempo μ(t+1) a x(t). La transformada unilateral de Laplace no aplica para este término, por lo que para el algoritmo se usa la entrada X(s) y se evita el error en la transformada. Por lo demás el algoritmo funciona bien.
Tarea: Revisar y justificar

Usando la función de transferencia h(t) con las transformadas de Laplace H(s)

H(s) = \frac{1}{s}e^{s} - 2\frac{1}{s}e^{-s}+ \frac{1}{s} e^{-3s}

simplificando la expresión como F(s)*(terminos exponenciales)

H(s) = \frac{1}{s} \Big[ e^{s} - 2e^{-s}+ e^{-3s} \Big]

tiene la forma gráfica,

La señal de entrada usando las transformadas de Laplace X(s)

X(s) = 2\frac{1}{s}e^{-s} - 2\frac{1}{s}e^{-3s} X(s) = \frac{2}{s} \Big[e^{-s} - e^{-3s} \Big]

La señal de salida Y(s)=H(s)*X(s)

Y(s) = \frac{2}{s^2} \Big[ e^{s} - 2e^{-s}+ e^{-3s} \Big] \Big[e^{-s} - e^{-3s} \Big]

multiplicando los términos de exponenciales

Y(s) = \frac{2}{s^2} \Big[ e^{s}e^{-s} - 2e^{-s}e^{-s}+ e^{-3s}e^{-s} - e^{s}e^{-3s} + 2e^{-s}e^{-3s} - e^{-3s}e^{-3s} \Big] Y(s) = \frac{2}{s^2} \Big[ 1 - 2e^{-2s}+ e^{-4s}- e^{-2s} + 2e^{-4s} - e^{-6s} \Big] Y(s) = \frac{2}{s^2} \Big[ 1 - 3e^{-2s}+ 3e^{-4s} - e^{-6s} \Big]

usando la tabla de transformadas de Laplace en forma inversa:

y(t) = 2 (t) \mu (t) -6 (t-2) \mu (t-2) +6(t-4) \mu (t-4) -2(t-6) \mu(t-6) \Big]

s1Eva2009TII_T3_LTI xh_y

La respuesta al impulso H(s)no tiene polos en el lado derecho del plano s, por lo que las salidas son acotadas, en consecuencia el sistema es asintoticamente estable y también BiBO estable.

s1Eva2009TII_T3_LTI polos H(s)


usando el algoritmo, considerando que las condiciones iniciales son cero,:

 H(s) = P(s)/Q(s):
 s      -s    -3*s
e    2*e     e    
-- - ----- + -----
s      s       s  
 H(s) en factores:
 s      -s    -3*s
e    2*e     e    
-- - ----- + -----
s      s       s  

 h(t) :
Heaviside(t - 3) - 2*Heaviside(t - 1) + Heaviside(t + 1)

polosceros:
exp(s) : {'Q_polos': {0: 1}, 'P_ceros': {}, 'Hs_k': 1/s}
exp(-3*s) : {'Q_polos': {0: 1}, 'P_ceros': {}, 'Hs_k': 1/s}
exp(-s) : {'Q_polos': {0: 1}, 'P_ceros': {}, 'Hs_k': -2/s}
Q_polos : {0: 1}
P_ceros : {}

Estabilidad de H(s):
 n_polos_real : 0
 n_polos_imag : 1
 enRHP : 0
 unicos : 0
 repetidos : 0
 asintota : estable

 X(s): 
   -s      -3*s
2*e     2*e    
----- - -------
  s        s   

Respuesta entrada cero ZIR H(s) y condiciones iniciales
term_cero : 0
ZIR :
0
yt_ZIR :
0

 ZSR respuesta estado cero:
ZSR :
        -2*s      -4*s      -6*s
2    6*e       6*e       2*e    
-- - ------- + ------- - -------
 2       2         2         2  
s       s         s         s   
yt_ZSR :
2*t*Heaviside(t) + (12 - 6*t)*Heaviside(t - 2) + (12 - 2*t)*Heaviside(t - 6) +
 (6*t - 24)*Heaviside(t - 4)

 Y(s)_total = ZIR + ZSR:
        -2*s      -4*s      -6*s
2    6*e       6*e       2*e    
-- - ------- + ------- - -------
 2       2         2         2  
s       s         s         s   

 y(t)_total = ZIR + ZSR:
2*t*Heaviside(t) + (12 - 6*t)*Heaviside(t - 2) + (12 - 2*t)*Heaviside(t - 6) +
 (6*t - 24)*Heaviside(t - 4)
>>>

Usando los bloques desarrollados en la Unidad 4 Sistemas LTI – Laplace  y las funciones resumidas como telg1001.py que pueden ser usados en cada pregunta.

# Y(s) Respuesta total con entada cero y estado cero
# Qs Y(s) = Ps X(s) ; H(s)=Ps/Qs
# https://blog.espol.edu.ec/telg1001/
import sympy as sym
import matplotlib.pyplot as plt
import telg1001 as fcnm

# INGRESO
s = sym.Symbol('s')
t = sym.Symbol('t', real=True)
d = sym.DiracDelta(t)
u = sym.Heaviside(t)

# H(s) respuesta impulso
Hs = sym.exp(s)/s - 2*sym.exp(-s)/s + sym.exp(-3*s)/s

# X(s) Señal de entrada
xt = 2*u.subs(t,t-1) - 2*u.subs(t,t-3)

# condiciones iniciales, [y'(0),y(0)] orden descendente
t0 = 0
cond_inicio = [0] # estado cero no se usan

# Grafica, intervalo tiempo [t_a,t_b]
t_a = -2 ; t_b = 8
muestras = 101  # 51 resolucion grafica

# PROCEDIMIENTO
Hs = fcnm.apart_s(Hs) # fracciones parciales
Hs_fc = fcnm.factor_exp(Hs) # en factores
Hs_Qs2 = fcnm.Q_cuad_s_parametros(Hs_fc)

polosceros = fcnm.busca_polosceros(Hs)
Q_polos = polosceros['Q_polos']
P_ceros = polosceros['P_ceros']

estable = fcnm.estabilidad_asintotica_s(Q_polos)

# H(t) respuesta al impulso
ht = 0*s
term_suma = sym.Add.make_args(Hs)
for term_k in term_suma:
    ht_k = sym.inverse_laplace_transform(term_k,s,t)
    # simplifica log(exp()) ej: e**(-2s)/(s**2)
    if ht_k.has(sym.log):
        ht_k = sym.simplify(ht_k,inverse=True)
    ht  = ht + ht_k
lista_escalon = ht.atoms(sym.Heaviside)
ht = sym.expand(ht,t) # terminos suma
ht = sym.collect(ht,lista_escalon)

# PROCEDIMIENTO Respuesta ZIR, ZSR
Xs = fcnm.laplace_transform_suma(xt)

# ZIR_s respuesta entrada cero de s
sol_ZIR = fcnm.respuesta_ZIR_s(Hs,cond_inicio)
ZIR = sol_ZIR['ZIR']
yt_ZIR = sol_ZIR['yt_ZIR']

# ZSR respuesta estado cero, Y(s) a entrada X(s)
sol_ZSR = fcnm.respuesta_ZSR_s(Hs,Xs)
ZSR = sol_ZSR['ZSR']
yt_ZSR = sol_ZSR['yt_ZSR']

# Respuesta total Y(s) y y(t)
Ys = ZIR + ZSR
Ys = fcnm.apart_s(Ys)
yt = yt_ZIR + yt_ZSR
lista_escalon = yt.atoms(sym.Heaviside)
yt = sym.collect(yt,lista_escalon)

# SALIDA
print(' H(s) = P(s)/Q(s):')
sym.pprint(Hs)
print(' H(s) en factores:')
sym.pprint(Hs_fc)
if len(Hs_Qs2)>0:
    print('\nH(s) parámetros cuadraticos:')
    fcnm.print_resultado_dict(Hs_Qs2)

print('\n h(t) :')
sym.pprint(ht)

print('\npolosceros:')
fcnm.print_resultado_dict(polosceros)

print('\nEstabilidad de H(s):')
for k in estable:
    print('',k,':',estable[k])

print('\n X(s): ')
sym.pprint(Xs)
print('\nRespuesta entrada cero ZIR H(s) y condiciones iniciales')

if not(sol_ZIR == sym.nan): # existe resultado
    fcnm.print_resultado_dict(sol_ZIR)
else:
    print(' insuficientes condiciones iniciales')
    print(' revisar los valores de cond_inicio[]')

print('\n ZSR respuesta estado cero:')
fcnm.print_resultado_dict(sol_ZSR)

print('\n Y(s)_total = ZIR + ZSR:')
sym.pprint(Ys)
print('\n y(t)_total = ZIR + ZSR:')
sym.pprint(yt)

# Graficas polos, H(s), con polos h(t) --------
muestras_H = 101
figura_s  = fcnm.graficar_Fs(Hs_fc,Q_polos,P_ceros,f_nombre='H',solopolos=True)
figura_Hs = fcnm.graficar_Fs(Hs_fc,Q_polos,P_ceros,muestras=muestras_H,f_nombre='H')
figura_ht = fcnm.graficar_ft(ht,t_a,t_b,muestras,f_nombre='h')
# GRAFICAS y(t),x(t),h(t) ---------------------
figura_ft = fcnm.graficar_xh_y(xt,ht,yt,t_a,t_b,muestras)
plt.show()