s2Eva2016TII_T2 LTI CT Circuito RC respuesta de frecuencia H(ω), impulso h(t)

Ejercicio: 2Eva2016TII_T2 LTI CT Circuito RC respuesta de frecuencia H(ω), impulso h(t)

literal a

v1(t)=vR(t)+vC(t) v_1 (t) = v_R (t) +v_C (t) v1(t)=Ri(t)+v2(t) v_1 (t) = R i(t) +v_2 (t) i(t)=Cδv2(t)δt i(t) = C \frac{\delta v_2 (t)}{\delta t} v2(t)=RCδv2(t)δt+v2(t) v_2(t) = RC \frac{\delta v_2 (t)}{\delta t} +v_2 (t) V1(ω)=jωRCV2(ω)+V2(ω)=V2(ω)[1+jωRC] V_1 (\omega) = j \omega RC V_2 (\omega) + V_2(\omega) = V_2(\omega) [1+j\omega RC] H(ω)=V2(ω)V1(ω)=11+jωRC=11+jωωc H(\omega) = \frac{V_2 (\omega)}{V_1(\omega)} = \frac{1}{1+j\omega RC} = \frac{1}{1+j\frac{\omega}{\omega_c}} ωc=1RC \omega _c = \frac{1}{RC} H(ω)=V2(ω)V1(ω)=11+jω2 H(\omega) =\frac{V_2(\omega)}{V_1(\omega)} = \frac{1}{1+j\frac{\omega}{2}} {H(ω)=11+(ω2)2θH(ω)=tg1(ω2) \begin{cases} |H(\omega) = \frac{1}{\sqrt{1+\big( \frac{\omega}{2}\big)^2}} \\ \theta_{H(\omega)} = -tg^{-1} \big( \frac{\omega}{2}\big) \end{cases} ωc=1RC \omega _c = \frac{1}{RC}

literal c

La respuesta impulso del filtro LPF, se obtiene mediante:

h(t)=F1[H(ω)]=F1[11+j(ω/2)] h(t) = \mathcal{F}^{-1} \Big[ H(\omega) \Big] = \mathcal{F}^{-1} \Big[ \frac{1}{1+j(\omega /2)} \Big] =2F1[1jω+2] =2\mathcal{F}^{-1} \Big[ \frac{1}{j\omega +2} \Big] h(t)=2e2tμ(t) h(t)=2e^{2t}\mu (t)

literal d

Método 1: usando la respuesta de frecuencia

{H(ω)=11+(ω2)2θH(ω)=tg1(ω2) \begin{cases} |H(\omega) = \frac{1}{\sqrt{1+\big( \frac{\omega}{2}\big)^2}} \\ \theta_{H(\omega)} = -tg^{-1} \big( \frac{\omega}{2}\big) \end{cases} {H(50)=11+(502)2=1(626)θH(ω)=tg1(502)=87.7 \begin{cases} |H(50) = \frac{1}{\sqrt{1+\big( \frac{50}{2}\big)^2}} = \frac{1}{\sqrt(626)} \\ \theta_{H(\omega)} = -tg^{-1} \big( \frac{50}{2}\big) = -87.7\end{cases} v2(t)=H(50)sin(50t+θH(50)) v_2(t) = |H(50)| \sin \big(50t+\theta_{H(50)} \big) v2(t)=1(626)sin(50t87.7)) v_2(t) = \frac{1}{\sqrt(626)} \sin \big(50t-87.7) \big)

método 2:

V2(ω)=V1(ω)H(ω) V_2(\omega ) = V_1(\omega) H(\omega) V1(ω)=F[v1(t)]=F[sin(50t)] V_1 (\omega) = \mathcal{F}[v_1(t) ] = \mathcal{F} [ \sin (50t) ] =jπδ(ω+50)jπδ(ω50) = j \pi \delta (\omega +50) - j \pi \delta (\omega-50) V2(ω)=V1(ω)H(ω) V_2 (\omega) = V_1(\omega) H(\omega) V2(ω)=[jπδ(ω+50)jπδ(ω50)][11+j(ω/2)] V_2 (\omega) = \Big[ j \pi \delta (\omega +50) - j \pi \delta (\omega-50) \Big] \Big[ \frac{1}{1+j(\omega/2)} \Big] =jπ[δ(ω+50)11+j(ω/2)δ(ω50)11+j(ω/2)] = j \pi \Big[ \delta (\omega + 50)\frac{1}{1+j(\omega /2)} - \delta (\omega - 50)\frac{1}{1+j(\omega /2)}\Big] =jπ[δ(ω+50)11+j(50/2)δ(ω50)11+j(50/2)] = j \pi \Big[ \delta (\omega + 50)\frac{1}{1+j(50 /2)} - \delta (\omega - 50)\frac{1}{1+j(50 /2)}\Big] =jπ[δ(ω+50)1+j25626δ(ω50)1j25626] = j \pi \Big[ \delta (\omega + 50)\frac{1+j25}{626} - \delta (\omega - 50)\frac{1-j25}{626}\Big] =jπ626[δ(ω+50)δ(ω50)+j25δ(ω+50)+j25δ(ω50)] = j \frac{\pi}{626} \Big[ \delta (\omega + 50) - \delta (\omega - 50) + j25 \delta (\omega + 50) + j25 \delta (\omega - 50)\Big] =1626[jπδ(ω+50)jπδ(ω50)]25626[πδ(ω+50)+πδ(ω50)] = \frac{1}{626} \Big[ j\pi \delta (\omega + 50) - j \pi \delta(\omega - 50)\Big] - \frac{25}{626} \Big[ \pi \delta (\omega + 50) +\pi \delta(\omega - 50)\Big] v2(t)=F1[V2(ω)] v_2(t) = \mathcal{F}^{-1} [V_2 (\omega)] =1626F1[[jπδ(ω+50)jπδ(ω50)]25[πδ(ω+50)+πδ(ω50)]] = \frac{1}{626} \mathcal{F}^{-1}\Bigg[ \Big[ j\pi \delta (\omega + 50) - j \pi \delta(\omega - 50)\Big] - 25 \Big[ \pi \delta (\omega + 50) +\pi \delta(\omega - 50)\Big] \Bigg] v2(t)=1626[sin(50t)25cos(50t)] v_2(t) = \frac{1}{626} \Big[ \sin (50t) - 25 \cos (50t) \Big]

usando fasores:

v2(t)=1626cos(50t177.709)=1626sin(50t87.70) v_2(t) = \frac{1}{626} \cos (50t-177.709) = \frac{1}{626} \sin (50t-87.70)

En la salida, existe un factor de atenuación de 0.04 y un retardo de 87.70°.
Como la señal de entrada se reproduce de manera exacta en su salida a pesar tener amplitud diferente y un retardo en el tiempo.