Ejercicio : 3Eva2016TI_T2 LTI CT sub-sistemas h(t) multiplicados con Fourier
a. Determinar la energía contenida en la señal h(t)
h ( t ) = sin ( 1 1 π t ) π t h(t) = \frac{\sin (11 \pi t)}{\pi t} h ( t ) = π t sin ( 1 1 π t )
E h ( t ) = ∫ − ∞ ∞ ∣ h ( t ) ∣ 2 δ t = 1 2 π ∫ − ∞ ∞ ∣ H ( ω ) ∣ 2 δ ω E_{h(t)} = \int_{-\infty}^{\infty} |h(t)|^2 \delta t = \frac{1}{2\pi} \int_{-\infty}^{\infty}|H(\omega)|^2 \delta \omega E h ( t ) = ∫ − ∞ ∞ ∣ h ( t ) ∣ 2 δ t = 2 π 1 ∫ − ∞ ∞ ∣ H ( ω ) ∣ 2 δ ω
= 1 2 π ∫ − 1 1 π 1 1 π ∣ 1 ∣ 2 δ ω = 1 2 π ω ∣ − 1 1 π 1 1 π = \frac{1}{2\pi} \int_{-11\pi}^{11\pi}|1|^2 \delta \omega = \frac{1}{2\pi} \omega \Big|_{-11\pi}^{11\pi} = 2 π 1 ∫ − 1 1 π 1 1 π ∣ 1 ∣ 2 δ ω = 2 π 1 ω ∣ ∣ ∣ − 1 1 π 1 1 π
= 1 2 π ( 1 1 π − ( − 1 1 π ) ) = \frac{1}{2\pi} \big(11\pi-(-11\pi)\big) = 2 π 1 ( 1 1 π − ( − 1 1 π ) )
= 1 2 π 2 ( 1 1 π ) = 1 1 = \frac{1}{2\pi} 2\big(11\pi\big) = 11 = 2 π 1 2 ( 1 1 π ) = 1 1
b. Determinar, esquematizar y etiquetar el espectro de Fourier de la señal m(t). Es decir M(ω) vs ω.
X ( ω ) = F [ ∑ i = 1 ∞ 1 k 2 cos ( 5 k π t ) ] X(\omega) = \mathscr{F} \Big[\sum_{i=1}^{\infty} \frac{1}{k^2} \cos(5k\pi t) \Big] X ( ω ) = F [ i = 1 ∑ ∞ k 2 1 cos ( 5 k π t ) ]
= ∑ i = 1 ∞ 1 k 2 F [ cos ( 5 k π t ) ] = \sum_{i=1}^{\infty} \frac{1}{k^2} \mathscr{F} \Big[\cos (5k\pi t) \Big] = i = 1 ∑ ∞ k 2 1 F [ cos ( 5 k π t ) ]
= ∑ i = 1 ∞ 1 k 2 [ π δ ( ω + 5 k π ) + π δ ( ω − 5 k π ) ] = \sum_{i=1}^{\infty} \frac{1}{k^2} \Big[\pi \delta (\omega +5k\pi) + \pi \delta (\omega -5k\pi) \Big] = i = 1 ∑ ∞ k 2 1 [ π δ ( ω + 5 k π ) + π δ ( ω − 5 k π ) ]
X ( ω ) = π ∑ i = 1 ∞ 1 k 2 [ δ ( ω + 5 k π ) + δ ( ω − 5 k π ) ] X(\omega) = \pi \sum_{i=1}^{\infty} \frac{1}{k^2} \Big[\delta (\omega +5k\pi) +\delta (\omega -5k\pi) \Big] X ( ω ) = π i = 1 ∑ ∞ k 2 1 [ δ ( ω + 5 k π ) + δ ( ω − 5 k π ) ]
Para el caso de la función de transferencia H(ω) que representa un filtro pasabajo LPF,
H ( ω ) = F [ cos ( 1 1 π t ) π t ] = p 1 1 π ( ω ) H(\omega) = \mathscr{F} \Big[\frac{\cos (11 \pi t)}{\pi t} \Big] = p_{11\pi}(\omega) H ( ω ) = F [ π t cos ( 1 1 π t ) ] = p 1 1 π ( ω )
− 1 1 π < ω < 1 1 π -11\pi \lt \omega \lt 11\pi − 1 1 π < ω < 1 1 π
M ( ω ) = X ( ω ) H ( ω ) M(\omega) = X( \omega ) H( \omega ) M ( ω ) = X ( ω ) H ( ω )
= p 1 1 π ( ω ) ∑ i = 1 ∞ 1 k 2 π [ δ ( ω + 5 k π ) + δ ( ω − 5 k π ) ] = p_{11\pi}(\omega) \sum_{i=1}^{\infty} \frac{1}{k^2} \pi\Big[\delta (\omega +5k\pi) +\delta (\omega -5k\pi) \Big] = p 1 1 π ( ω ) i = 1 ∑ ∞ k 2 1 π [ δ ( ω + 5 k π ) + δ ( ω − 5 k π ) ]
por el filtro pasabajo LPF se limitan las señales hasta k=2
= ∑ i = 1 2 1 k 2 π [ δ ( ω + 5 k π ) + δ ( ω − 5 k π ) ] = \sum_{i=1}^{2} \frac{1}{k^2} \pi\Big[\delta (\omega +5k\pi) +\delta (\omega -5k\pi) \Big] = i = 1 ∑ 2 k 2 1 π [ δ ( ω + 5 k π ) + δ ( ω − 5 k π ) ]
= π 1 1 2 [ δ ( ω + 5 π ) + δ ( ω − 5 π ) ] = \pi \frac{1}{1^2} \Big[\delta (\omega +5\pi) +\delta (\omega -5\pi) \Big] = π 1 2 1 [ δ ( ω + 5 π ) + δ ( ω − 5 π ) ]
+ π 1 2 2 [ δ ( ω + 5 ( 2 ) π ) + δ ( ω − 5 ( 2 ) π ) ] + \pi \frac{1}{2^2} \Big[\delta (\omega +5(2)\pi) +\delta (\omega -5(2)\pi) \Big] + π 2 2 1 [ δ ( ω + 5 ( 2 ) π ) + δ ( ω − 5 ( 2 ) π ) ]
= π δ ( ω + 5 π ) + π δ ( ω − 5 π ) = \pi \delta (\omega +5\pi) +\pi \delta (\omega -5\pi) = π δ ( ω + 5 π ) + π δ ( ω − 5 π )
+ π 4 δ ( ω + 1 0 π ) + π 4 δ ( ω − 1 0 π ) + \frac{\pi}{4} \delta (\omega +10\pi) +\frac{\pi}{4} \delta (\omega -10\pi) + 4 π δ ( ω + 1 0 π ) + 4 π δ ( ω − 1 0 π )
c. Determinar, esquematizar y etiquetar el espectro de Fourier de la señal n(t). Es decir N(ω) vs ω
N ( ω ) = G ( ω ) H ( ω ) N(\omega) = G( \omega ) H( \omega ) N ( ω ) = G ( ω ) H ( ω )
N ( ω ) = G ( ω ) F [ ∑ k = 1 1 0 cos ( 8 k π t ) ] N(\omega) = G( \omega ) \mathscr{F} \Big[\sum_{k=1}^{10} \cos (8k \pi t) \Big] N ( ω ) = G ( ω ) F [ k = 1 ∑ 1 0 cos ( 8 k π t ) ]
= p 1 1 π ( ω ) ∑ i = 1 1 0 π [ δ ( ω + 8 k π ) + δ ( ω − 8 k π ) ] = p_{11\pi}(\omega) \sum_{i=1}^{10} \pi\Big[\delta (\omega +8k\pi) +\delta (\omega -8k\pi) \Big] = p 1 1 π ( ω ) i = 1 ∑ 1 0 π [ δ ( ω + 8 k π ) + δ ( ω − 8 k π ) ]
por el filtro pasabajo LPF se limitan las señales hasta k=1
= π ∑ i = 1 1 [ δ ( ω + 8 k π ) + δ ( ω − 8 k π ) ] = \pi \sum_{i=1}^{1} \Big[\delta (\omega +8k\pi) +\delta (\omega -8k\pi) \Big] = π i = 1 ∑ 1 [ δ ( ω + 8 k π ) + δ ( ω − 8 k π ) ]
= π [ δ ( ω + 8 π ) + δ ( ω − 8 π ) ] = \pi \Big[\delta (\omega +8\pi) +\delta (\omega -8\pi) \Big] = π [ δ ( ω + 8 π ) + δ ( ω − 8 π ) ]
= π δ ( ω + 8 π ) + π δ ( ω − 8 π ) = \pi \delta (\omega +8\pi) + \pi\delta (\omega -8\pi) = π δ ( ω + 8 π ) + π δ ( ω − 8 π )
d. Determinar la potencia de la señal de salida y(t) y la representación de su espectro de Series de Fourier complejas exponenciales. Indique también el orden de los armónicos que están presentes en dicha salida.
Z ( ω ) = F [ m ( t ) n ( t ) ] = 1 2 π M ( ω ) ⊛ N ( ω ) ] Z(\omega) = \mathscr{F}[m(t) n(t)] = \frac{1}{2 \pi} M(\omega) \circledast N(\omega)] Z ( ω ) = F [ m ( t ) n ( t ) ] = 2 π 1 M ( ω ) ⊛ N ( ω ) ]
= 1 2 π [ π δ ( ω + 5 π ) + π δ ( ω − 5 π ) + = \frac{1}{2 \pi} \Big[\pi \delta (\omega +5\pi) +\pi \delta (\omega -5\pi) + = 2 π 1 [ π δ ( ω + 5 π ) + π δ ( ω − 5 π ) +
+ π 4 δ ( ω + 1 0 π ) + π 4 δ ( ω − 1 0 π ) ] ⊛ [ π δ ( ω + 8 π ) + π δ ( ω − 8 π ) ] +\frac{\pi}{4} \delta (\omega +10\pi) +\frac{\pi}{4} \delta (\omega -10\pi)\Big] \circledast \Big[ \pi \delta (\omega +8\pi) + \pi\delta (\omega -8\pi) \Big] + 4 π δ ( ω + 1 0 π ) + 4 π δ ( ω − 1 0 π ) ] ⊛ [ π δ ( ω + 8 π ) + π δ ( ω − 8 π ) ]
se obtiene factor común π, para simplificar
Z ( ω ) = π 2 2 π [ δ ( ω + 5 π ) + δ ( ω − 5 π ) + Z(\omega) = \frac{\pi^2}{2\pi} \Big[\delta (\omega +5\pi) + \delta (\omega -5\pi) + Z ( ω ) = 2 π π 2 [ δ ( ω + 5 π ) + δ ( ω − 5 π ) +
+ 1 4 δ ( ω + 1 0 π ) + 1 4 δ ( ω − 1 0 π ) ] ⊛ [ δ ( ω + 8 π ) + δ ( ω − 8 π ) ] +\frac{1}{4} \delta (\omega +10\pi) +\frac{1}{4} \delta (\omega -10\pi)\Big] \circledast \Big[ \delta (\omega +8\pi) + \delta (\omega -8\pi) \Big] + 4 1 δ ( ω + 1 0 π ) + 4 1 δ ( ω − 1 0 π ) ] ⊛ [ δ ( ω + 8 π ) + δ ( ω − 8 π ) ]
= π 2 [ δ ( ω + 5 π + 8 π ) + δ ( ω − 5 π + 8 π ) + = \frac{\pi}{2} \Big[\delta (\omega +5\pi+8\pi) + \delta (\omega -5\pi+8\pi) + = 2 π [ δ ( ω + 5 π + 8 π ) + δ ( ω − 5 π + 8 π ) +
+ 1 4 δ ( ω + 1 0 π + 8 π ) + 1 4 δ ( ω − 1 0 π + 8 π ) +\frac{1}{4} \delta (\omega +10\pi +8\pi) +\frac{1}{4} \delta (\omega -10\pi +8\pi) + 4 1 δ ( ω + 1 0 π + 8 π ) + 4 1 δ ( ω − 1 0 π + 8 π )
+ δ ( ω + 5 π − 8 π ) + δ ( ω − 5 π − 8 π ) + +\delta (\omega +5\pi-8\pi) + \delta (\omega -5\pi-8\pi) + + δ ( ω + 5 π − 8 π ) + δ ( ω − 5 π − 8 π ) +
+ 1 4 δ ( ω + 1 0 π − 8 π ) + 1 4 δ ( ω − 1 0 π − 8 π ) ] +\frac{1}{4} \delta (\omega +10\pi -8\pi) +\frac{1}{4} \delta (\omega -10\pi -8\pi) \Big] + 4 1 δ ( ω + 1 0 π − 8 π ) + 4 1 δ ( ω − 1 0 π − 8 π ) ]
Z ( ω ) = π 2 [ δ ( ω + 1 3 π ) + δ ( ω + 3 π ) + Z(\omega) = \frac{\pi}{2} \Big[\delta (\omega +13\pi) + \delta (\omega +3\pi) + Z ( ω ) = 2 π [ δ ( ω + 1 3 π ) + δ ( ω + 3 π ) +
+ 1 4 δ ( ω + 1 8 π ) + 1 4 δ ( ω − 2 π ) +\frac{1}{4}\delta (\omega +18\pi) +\frac{1}{4} \delta (\omega -2\pi) + 4 1 δ ( ω + 1 8 π ) + 4 1 δ ( ω − 2 π )
+ δ ( ω − 3 π ) + δ ( ω − 1 3 π ) + + \delta (\omega -3\pi) + \delta (\omega -13\pi) + + δ ( ω − 3 π ) + δ ( ω − 1 3 π ) +
+ 1 4 δ ( ω + 2 π ) + 1 4 δ ( ω − 1 8 π ) ] +\frac{1}{4} \delta (\omega +2\pi) +\frac{1}{4} \delta (\omega -18\pi)\Big] + 4 1 δ ( ω + 2 π ) + 4 1 δ ( ω − 1 8 π ) ]
d. Determinar la potencia de la señal de salida y(t) y la representación de su espectro de Series de Fourier complejas exponenciales. Indique también el orden de los armónicos que están presentes en dicha salida.
Y ( ω ) = Z ( ω ) H ( ω ) ] = p 1 1 π ( ω ) Z ( ω ) Y(\omega) = Z(\omega) H(\omega)] = p_{11\pi}(\omega)Z(\omega) Y ( ω ) = Z ( ω ) H ( ω ) ] = p 1 1 π ( ω ) Z ( ω )
Las frecuencias superiores a 11ω no pasan por el filtro LPF
Z ( ω ) = π 2 [ δ ( ω + 1 3 π ) + δ ( ω + 3 π ) + Z(\omega) = \frac{\pi}{2} \Big[\cancel{\delta (\omega +13\pi)} + \delta (\omega +3\pi) + Z ( ω ) = 2 π [ δ ( ω + 1 3 π ) + δ ( ω + 3 π ) +
+ 1 4 δ ( ω + 1 8 π ) + 1 4 δ ( ω − 2 π ) +\cancel{\frac{1}{4}\delta (\omega +18\pi)} +\frac{1}{4} \delta (\omega -2\pi) + 4 1 δ ( ω + 1 8 π ) + 4 1 δ ( ω − 2 π )
+ δ ( ω − 3 π ) + δ ( ω − 1 3 π ) + + \delta (\omega -3\pi) + \cancel{\delta (\omega -13\pi)} + + δ ( ω − 3 π ) + δ ( ω − 1 3 π ) +
+ 1 4 δ ( ω + 2 π ) + 1 4 δ ( ω − 1 8 π ) ] +\frac{1}{4} \delta (\omega +2\pi) +\cancel{\frac{1}{4} \delta (\omega -18\pi)}\Big] + 4 1 δ ( ω + 2 π ) + 4 1 δ ( ω − 1 8 π ) ]
Y ( ω ) = π 2 [ δ ( ω + 3 π ) + δ ( ω − 3 π ) + Y(\omega)= \frac{\pi}{2} \Big[\delta (\omega +3\pi) + \delta (\omega -3\pi) + Y ( ω ) = 2 π [ δ ( ω + 3 π ) + δ ( ω − 3 π ) +
+ 1 4 δ ( ω + 2 π ) + 1 4 δ ( ω − 2 π ) ] +\frac{1}{4} \delta (\omega +2\pi) + \frac{1}{4} \delta (\omega -2\pi)\Big] + 4 1 δ ( ω + 2 π ) + 4 1 δ ( ω − 2 π ) ]
Y ( ω ) = π 2 δ ( ω + 3 π ) + π 2 δ ( ω − 3 π ) + Y(\omega)= \frac{\pi}{2}\delta (\omega +3\pi) + \frac{\pi}{2}\delta (\omega -3\pi) + Y ( ω ) = 2 π δ ( ω + 3 π ) + 2 π δ ( ω − 3 π ) +
+ π 8 δ ( ω + 2 π ) + π 8 δ ( ω − 2 π ) +\frac{\pi}{8} \delta (\omega +2\pi) + \frac{\pi}{8} \delta (\omega -2\pi) + 8 π δ ( ω + 2 π ) + 8 π δ ( ω − 2 π )
ordenando y agrupando para obtener la inversa de la transformada,
Y ( ω ) = 1 8 π [ δ ( ω + 2 π ) + δ ( ω − 2 π ) ] Y(\omega)= \frac{1}{8} \pi \Big[ \delta (\omega +2\pi) + \delta (\omega -2\pi) \Big] Y ( ω ) = 8 1 π [ δ ( ω + 2 π ) + δ ( ω − 2 π ) ]
+ 1 2 π [ δ ( ω + 3 π ) + δ ( ω − 3 π ) ] +\frac{1}{2} \pi\Big[\delta (\omega +3\pi) + \delta (\omega -3\pi) \Big] + 2 1 π [ δ ( ω + 3 π ) + δ ( ω − 3 π ) ]
y ( t ) = F − 1 [ Y ( ω ) ] y(t) = \mathscr{F}^{-1}\Big[ Y(\omega) \Big] y ( t ) = F − 1 [ Y ( ω ) ]
y ( t ) = 1 8 cos ( 2 π t ) + 1 2 cos ( 3 π t ) y(t) = \frac{1}{8}\cos (2 \pi t) + \frac{1}{2}\cos (3 \pi t) y ( t ) = 8 1 cos ( 2 π t ) + 2 1 cos ( 3 π t )
para determinar las frecuencias fundamentales de y(t) se tiene:
ω 1 = 2 π f = 2 π T 1 = 2 π \omega_1 = 2\pi f = \frac{2\pi}{T_1} =2 \pi ω 1 = 2 π f = T 1 2 π = 2 π
T 1 = 2 π 2 π = 1 T_1 = \frac{2\pi}{2\pi} =1 T 1 = 2 π 2 π = 1
ω 2 = 2 π f = 2 π T 2 = 3 π \omega_2 = 2\pi f = \frac{2\pi}{T_2} =3 \pi ω 2 = 2 π f = T 2 2 π = 3 π
T 2 = 2 π 3 π = 2 3 T_2 = \frac{2\pi}{3\pi} = \frac{2}{3} T 2 = 3 π 2 π = 3 2
T 1 T 2 = 1 2 / 3 = 3 2 \frac{T_1}{T_2} = \frac{1}{2/3} =\frac{3}{2} T 2 T 1 = 2 / 3 1 = 2 3
la relación entre los periodos fundamentales es racional, se tiene que la señal de salida y(t) es periódica.
2 T 1 = 3 T 2 = T 0 2T_1 = 3T_2 =T_0 2 T 1 = 3 T 2 = T 0
2 ( 1 ) = 3 2 3 = 2 = T 0 2(1) = 3 \frac{2}{3} = 2 =T_0 2 ( 1 ) = 3 3 2 = 2 = T 0
ω 0 = 2 π T 0 = 2 π 2 = π \omega_0 = \frac{2\pi}{T_0} =\frac{2\pi}{2} = \pi ω 0 = T 0 2 π = 2 2 π = π
los armónicos se pueden obtener observando la gráfica de y(ω):
k1 = 2, k2 =3
para la potencia de la señal de salida y(t) se puede aplicar la relación de Parseval, siendo Ck los coeficientes de cada cos() para cada ωk , y C0 es cero por no tener componente en ω0 =π
P y ( t ) = C o 2 + 1 2 ∑ k = 1 ∞ ∣ C k ∣ 2 P_{y(t)} = C_o^2 + \frac{1}{2} \sum_{k=1}^{\infty} |C_k|^2 P y ( t ) = C o 2 + 2 1 k = 1 ∑ ∞ ∣ C k ∣ 2
= ( 0 ) 2 + 1 2 [ ( 1 8 ) 2 + ( 1 2 ) 2 ] =(0)^2 + \frac{1}{2} \Big[ \Big(\frac{1}{8}\Big)^2 + \Big( \frac{1}{2}\Big) ^2 \Big] = ( 0 ) 2 + 2 1 [ ( 8 1 ) 2 + ( 2 1 ) 2 ]
= ( 0 ) 2 + 1 2 [ 1 6 4 + 1 4 ] = 1 2 ( 1 4 ) [ 1 1 6 + 1 ] =(0)^2 + \frac{1}{2} \Big[ \frac{1}{64} +\frac{1}{4} \Big] = \frac{1}{2}\Big(\frac{1}{4}\Big) \Big[ \frac{1}{16} +1 \Big] = ( 0 ) 2 + 2 1 [ 6 4 1 + 4 1 ] = 2 1 ( 4 1 ) [ 1 6 1 + 1 ]
= 1 8 1 7 1 6 = 1 7 1 2 8 = \frac{1}{8} \frac{17}{16} = \frac{17}{128} = 8 1 1 6 1 7 = 1 2 8 1 7