Referencia: Lathi Tabla 4.1 p334. Oppenheim Tabla 9.2 p692. Hsu Tabla 3-1 p115
No. |
x(t) |
X(s) |
ROC |
1a |
δ(t) |
1 |
Toda s |
1b |
δ(t-T) |
e-sT |
Toda s |
2a |
μ(t) |
s1 |
Re{s}>0 |
2b |
-μ(-t) |
s1 |
Re{s}<0 |
3 |
tμ(t) |
s21 |
Re{s}>0 |
4a |
tnμ(t) |
sn+1n! |
Re{s}>0 |
4b |
(n−1)!tn−1μ(t) |
sn1 |
Re{s}>0 |
4c |
−(n−1)!tn−1μ(−t) |
sn1 |
Re{s}<0 |
5 |
eλtμ(t) |
s−λ1 |
Re{s}>0 |
6 |
teλtμ(t) |
(s−λ)21 |
Re{s}>0 |
7 |
tneλtμ(t) |
(s−λ)n+1n! |
|
8a |
cos (bt) μ(t) |
s2+b2s |
Re{s}>0 |
8b |
sin (bt) μ(t) |
s2+b2b |
Re{s}>0 |
9a |
e-atcos (bt) μ(t) |
(s+a)2+b2s+a |
Re{s}>-a |
9b |
e-atsin (bt) μ(t) |
(s+a)2+b2b |
Re{s}>-a |
10 |
μn(t)=δtnδnδ(t) |
sn |
Toda s |
11 |
μ−n(t)=μ(t)⊛...⊛μ(t)
n veces |
sn1 |
Re{s}>0 |
12a |
re-atcos (bt+θ) μ(t) |
s2+2as+(a2+b2)(rcos(θ)s+(arcos(θ)−brsin(θ)) |
12b |
re-atcos (bt+θ) μ(t) |
s+a−jb0.5rejθ+s+a+jb0.5re−jθ |
12c |
re-atcos (bt+θ) μ(t) |
s2+2as+cAs+B |
|
|
r=c−a2A2c+B2−2ABa |
θ=tan−1(Ac−a2Aa−B)
b=c−a2 |
12d |
e−at[Acos(bt)+bB−Aasin(bt)]μ(t) |
s2+2as+cAs+B |
|
b=c−a2 |
|
|
Transformada Laplace – Tabla de Propiedades
Transformada de Laplace – Concepto con Python