No. |
x[n] |
X[z] |
|
ROC |
1a |
δ[n] |
1 |
|
Toda z |
1b |
δ[n-m] |
z-m |
Toda z excepto
0 (si m>0) ó
∞ (si m<0) |
2a |
μ[n] |
z−1z |
1−z−11 |
|z|>1 |
2b |
-μ[-n-1] |
z−1z |
1−z−11 |
|z|<1 |
3 |
n μ[n] |
(z−1)2z |
(1−z−1)2z−1 |
|z|>1 |
4 |
n2 μ[n] |
(z−1)3z(z+1) |
|
|
5 |
n3 μ[n] |
(z−1)4z(z2+4z+1) |
|
|
6a |
γn μ[n] |
z−γz |
1−γz−11 |
|z|>|γ| |
6b |
-γn μ[-n-1] |
z−γz |
1−γz−11 |
|z|<|γ| |
7 |
γn-1 μ[n-1] |
z−γ1 |
|
|
8a |
n γn μ[n] |
(z−γ)2γz |
(1−γz−1)2γz−1 |
|z|>|γ| |
8b |
-n γn μ[-n-1] |
(z−γ)2γz |
(1−γz−1)2γz−1 |
|z|<|γ| |
8c |
(n+1) γn μ[n] |
[z−γz]2 |
(1−γz−1)21 |
|z|>|γ| |
9 |
n2 γn μ[n] |
(z−γ)3γz(z+γ) |
|
|
10 |
γmm!n(n−1)(n−2)...(n−m+1)γnμ[n] |
(z−γ)m+1z |
|
|
11a |
|γ|n cos(βn) μ[n] |
z2−(2∣γ∣cos(β))z+∣γ∣2z(z−∣γ∣cos(β)) |
|
|z|>γ |
11b |
|γ|n sin(βn) μ[n] |
z2−(2∣γ∣cos(β))z+∣γ∣2z∣γ∣sin(β) |
|
|z|>γ |
12a |
r|γ|n cos(βn+θ) μ[n] |
z2−(2∣γ∣cos(β))z+∣γ∣2rz[zcos(θ)−∣γ∣cos(β−θ)] |
|
|
12b |
r|γ|n cos(βn+θ) μ[n]
γ = |γ| ejβ |
z−γ(0.5rejθ)z+z−γ∗(0.5re−jθ)z |
|
|
12c |
r|γ|n cos(βn+θ) μ[n] |
z2+2az+∣γ∣2z(Az+B) |
|
r=∣γ∣2−a2A2∣γ∣2+B2−2AaB |
β=cos−1∣γ∣−a
θ=tan−1A∣γ∣2−a2Aa−B |
|
13 |
{an ; 0≤ n ≤ N-1
{0 ; otro caso |
|
1−az−11−aNz−n |
|z|>0 |