7.2.1 EDP Elípticas método iterativo con Python

EDP Elípticas [ concepto ] [ ejercicio ]
Método iterativo: [ Analítico ] [ Algoritmo ]

..


1. Ejercicio

Referencia: Chapra 29.1 p866, Rodríguez 10.3 p425, Burden 12.1 p694

Siguiendo el tema anterior en EDP Elípticas, para resolver la parte numérica asuma

Valores de frontera: Ta = 60, Tb = 25, Tc = 50, Td = 70
Longitud en x0 = 0, xn = 2, y0 = 0, yn = 1.5
Tamaño de paso dx = 0.25, dy = dx
iteramax=100, tolera = 0.0001

Para la ecuación diferencial parcial Elíptica

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{ \partial y^2} = 0


EDP Elípticas [ concepto ] [ ejercicio ]
Método iterativo: [ Analítico ] [ Algoritmo ]
..


2. EDP Elípticas: Método iterativo – Desarrollo Analítico

A partir del resultado desarrollado en EDP elípticas:

\frac{(\Delta y)^2}{(\Delta x)^2} \Big( u_{i+1,j}-2u_{i,j} +u_{i-1,j} \Big)+ u_{i,j+1}-2u_{i,j}+u_{i,j-1}=0 \lambda \Big( u_{i+1,j}-2u_{i,j} +u_{i-1,j} \Big)+ u_{i,j+1}-2u_{i,j}+u_{i,j-1}=0

y con el supuesto que: \lambda = \frac{(\Delta y)^2}{(\Delta x)^2} = 1

se puede plantear que:

u_{i+1,j}-4u_{i,j}+u_{i-1,j} + u_{i,j+1} +u_{i,j-1} = 0

que reordenando para un punto central desconocido se convierte a:

u_{i,j} = \frac{1}{4} \big[ u_{i+1,j}+u_{i-1,j} + u_{i,j+1} +u_{i,j-1} \big]

con lo que se interpreta que cada punto central es el resultado del promedio de los puntos alrededor del rombo formado en la malla.

El cálculo numérico se puede realizar de forma iterativa haciendo varias pasadas en la matriz, promediando cada punto. Para revisar las iteraciones se controla la convergencia junto con un máximo de iteraciones.

EDP Elípticas [ concepto ] [ ejercicio ]
Método iterativo: [ Analítico ] [ Algoritmo ]

..


3. Algoritmo en Python

Para el ejercicio dado, se presenta el resultado para tres iteraciones y el resultado final con un gráfico en 3D:

u inicial:
[[50.   50.   50.   50.   50.   50.   50.   50.   50.  ]
 [60.   51.25 51.25 51.25 51.25 51.25 51.25 51.25 25.  ]
 [60.   51.25 51.25 51.25 51.25 51.25 51.25 51.25 25.  ]
 [60.   51.25 51.25 51.25 51.25 51.25 51.25 51.25 25.  ]
 [60.   51.25 51.25 51.25 51.25 51.25 51.25 51.25 25.  ]
 [60.   51.25 51.25 51.25 51.25 51.25 51.25 51.25 25.  ]
 [70.   70.   70.   70.   70.   70.   70.   70.   70.  ]]
itera: 0   ;  u:
[[50.   50.   50.   50.   50.   50.   50.   50.   50.  ]
 [60.   53.12 51.41 50.98 50.87 50.84 50.84 44.27 25.  ]
 [60.   53.91 51.95 51.36 51.18 51.13 51.12 42.91 25.  ]
 [60.   54.1  52.14 51.5  51.3  51.23 51.21 42.59 25.  ]
 [60.   54.15 52.2  51.55 51.34 51.27 51.24 42.52 25.  ]
 [60.   58.85 58.07 57.72 57.58 57.52 57.5  48.76 25.  ]
 [70.   70.   70.   70.   70.   70.   70.   70.   70.  ]]
errado_u:  8.728094100952148
itera: 1   ;  u:
[[50.   50.   50.   50.   50.   50.   50.   50.   50.  ]
 [60.   53.83 51.69 50.98 50.75 50.68 49.02 41.73 25.  ]
 [60.   54.97 52.54 51.55 51.18 51.05 48.55 39.47 25.  ]
 [60.   55.31 52.89 51.82 51.39 51.23 48.4  38.85 25.  ]
 [60.   56.59 54.78 53.91 53.54 53.38 50.45 40.76 25.  ]
 [60.   61.17 60.91 60.6  60.42 60.33 57.38 48.29 25.  ]
 [70.   70.   70.   70.   70.   70.   70.   70.   70.  ]]
errado_u:  3.7443900108337402
itera: 2   ;  u:
[[50.   50.   50.   50.   50.   50.   50.   50.   50.  ]
 [60.   54.17 51.92 51.06 50.73 50.2  47.62 40.52 25.  ]
 [60.   55.5  52.97 51.76 51.23 50.3  46.45 37.7  25.  ]
 [60.   56.25 53.95 52.75 52.19 51.07 46.71 37.54 25.  ]
 [60.   58.05 56.71 55.9  55.47 54.33 49.8  40.16 25.  ]
 [60.   62.24 62.39 62.18 61.99 60.93 57.25 48.1  25.  ]
 [70.   70.   70.   70.   70.   70.   70.   70.   70.  ]]
errado_u:  2.0990657806396484
... continua
Método Iterativo EDP Elíptica
iteraciones: 41  converge =  True
xi: [0.   0.25 0.5  0.75 1.   1.25 1.5  1.75 2.  ]
yj: [0.   0.25 0.5  0.75 1.   1.25 1.5 ]
Tabla de resultados en malla EDP Elíptica
j, U[i,j]
6 [70. 70. 70. 70. 70. 70. 70. 70. 70.]
5 [60.   64.02 64.97 64.71 63.62 61.44 57.16 47.96 25.  ]
4 [60.   61.1  61.14 60.25 58.35 54.98 49.23 39.67 25.  ]
3 [60.   59.23 58.25 56.8  54.53 50.89 45.13 36.48 25.  ]
2 [60.   57.56 55.82 54.19 52.09 48.92 43.91 36.14 25.  ]
1 [60.   55.21 53.27 52.05 50.73 48.78 45.46 39.15 25.  ]
0 [50. 50. 50. 50. 50. 50. 50. 50. 50.]
>>>

cuyos valores se interpretan mejor en una gráfica, en este caso 3D:

EDP Elipticas Iterativo

Instrucciones en Python

# Ecuaciones Diferenciales Parciales
# Elipticas. Método iterativo
import numpy as np

# INGRESO
# Condiciones iniciales en los bordes
Ta = 60     # izquierda
Tb = 25     # derecha
#Tc = 50    # inferior 
fxc = lambda x: 50+0*x # función inicial inferior
# Td = 70   # superior
fxd = lambda x: 70+0*x # función inicial superior
# dimensiones de la placa
x0 = 0    # longitud en x
xn = 2
y0 = 0    # longitud en y
yn = 1.5
# discretiza, supone dx=dy
dx = 0.25  # Tamaño de paso
dy = dx
iteramax = 100
tolera = 0.0001
verdigitos = 2   # decimales a mostrar en tabla de resultados

# PROCEDIMIENTO
xi = np.arange(x0,xn+dx,dx)
yj = np.arange(y0,yn+dy,dy)
n = len(xi)
m = len(yj)

# Matriz u
u = np.zeros(shape=(n,m),dtype = float)
# llena u con valores en fronteras
u[0,:]   = Ta       # izquierda
u[n-1,:] = Tb       # derecha
fic = fxc(xi)
u[:,0]   = fic  # Tc inferior
fid = fxd(xi)
u[:,m-1] = fid  # Td superior
# valor inicial de iteración dentro de u
# promedio = (Ta+Tb+Tc+Td)/4
promedio = (Ta+Tb+np.max(fic)+np.max(fid))/4
u[1:n-1,1:m-1] = promedio
np.set_printoptions(precision=verdigitos)
print('u inicial:')
print(np.transpose(u))

# iterar puntos interiores
itera = 0
converge = False
while (itera<=iteramax and converge==False):
    itera = itera +1
    Uantes = np.copy(u)
    for i in range(1,n-1):
        for j in range(1,m-1):
            u[i,j] = (u[i-1,j]+u[i+1,j]+u[i,j-1]+u[i,j+1])/4
    diferencia = u - Uantes
    errado_u = np.max(np.abs(diferencia))
    if (errado_u<tolera):
        converge=True
    if itera<=3:
        np.set_printoptions(precision=verdigitos)
        print('itera:',itera-1,'  ; ','u:')
        print(np.transpose(u))
        print('errado_u: ', errado_u)
    if itera==4:
        print('... continua')
        
# SALIDA
print('Método Iterativo EDP Elíptica')
print('iteraciones:',itera,' converge = ', converge)
print('xi:', xi)
print('yj:', yj)
print('Tabla de resultados en malla EDP Elíptica')
print('j, U[i,j]')
for j in range(m-1,-1,-1):
    print(j,u[:,j])

La gráfica de resultados requiere ajuste de ejes, pues el índice de filas es el eje x, y las columnas es el eje y. La matriz y sus datos en la gráfica se obtiene como la transpuesta de u

# GRAFICA en 3D ------
import matplotlib.pyplot as plt
# Malla para cada eje X,Y
Xi, Yi = np.meshgrid(xi, yj)
U = np.transpose(u) # ajuste de índices fila es x

fig_3D = plt.figure()
graf_3D = fig_3D.add_subplot(111, projection='3d')
graf_3D.plot_wireframe(Xi,Yi,U,
                       color ='blue')
graf_3D.plot(Xi[1,0],Yi[1,0],U[1,0],'o',color ='orange')
graf_3D.plot(Xi[1,1],Yi[1,1],U[1,1],'o',color ='red',
             label='U[i,j]')
graf_3D.plot(Xi[1,2],Yi[1,2],U[1,2],'o',color ='salmon')
graf_3D.plot(Xi[0,1],Yi[0,1],U[0,1],'o',color ='green')
graf_3D.plot(Xi[2,1],Yi[2,1],U[2,1],'o',color ='salmon')
graf_3D.set_title('EDP elíptica')
graf_3D.set_xlabel('x')
graf_3D.set_ylabel('y')
graf_3D.set_zlabel('U')
graf_3D.legend()
graf_3D.view_init(35, -45)
plt.show()

EDP Elípticas [ concepto ] [ ejercicio ]
Método iterativo: [ Analítico ] [ Algoritmo ]