Examen | 2017-2018 | Término 1 | Primera Evaluación | Tema 2
Considere las bases ordenadas del espacio vectorial V=D_{2\times 2} que se indican a continuación:\small{B_1=\left\{ \left(\begin{array}{cc} 2 & 0\\ 0 & 1 \end{array}\right),\left(\begin{array}{cc} 3 & 0 \\ 0 & 2 \end{array}\right)\right\} \quad B_2=\left\{ \left(\begin{array}{rr} 4 & 0\\ 0 & -1 \end{array}\right),\left(\begin{array}{rr} -4 & 0 \\ 0 & -3 \end{array}\right)\right\}}a. Si \small{A=\left(\begin{array}{rr} 5 & 0\\ 0 & -2 \end{array}\right)}, determine \left[A\right]_{B_1}.
b. Determine la matriz (de transición) de cambio de base de B_1 a B_2.