Tema 2

Examen | 2017-2018 | Término 2 | Tercera Evaluación | Tema 2

Sean B1B_1 y B2B_2 bases de R2\mathbb{R}^2 tales que MB1B2=(1103)M_{B_1 B_2}=\begin{pmatrix}1 & 1\\ 0 & -3 \end{pmatrix} es la matriz de cambio de base de B1B_1 a B2B_2.

a. Si [u]B1=(14)[u]_{B_1}=\begin{pmatrix}-1\\4 \end{pmatrix}, calcular [u]B2[u]_{B_2}.

b. Si [v]B2=(35)[v]_{B_2}=\begin{pmatrix}3\\5 \end{pmatrix}, calcular [v]B1[v]_{B_1}.

c. Si B1={(1,3),(0,4)}B_1=\{(1,3),(0,4)\}, obtener la base de B2B_2.

Publicado por

Fernando Tenesaca

rtenese@espol.edu.ec | FCNM - ESPOL