Tema 3

Examen | 2019-2020 | Término 1 | Segunda Evaluación | Tema 3

Sea VV el espacio vectorial real de todas las matrices cuadradas de orden 22, con las operaciones usuales. Se define, en VV, el producto interno AB=tr(BTA)\langle A|B \rangle=tr(B^T A) (esto es, la traza del producto entre la transpuesta de la matriz BB y la matriz AA). Considerando el subespacio H={(abbc):a+c=0,a,b,cR}H=\begin{Bmatrix} \begin{pmatrix} \begin{array}{cc} a&b\\b&c \end{array}\end{pmatrix} : a+c=0 \, , \, \forall a,b,c\in \mathbb{R} \end{Bmatrix}de VV, determine:

a. Una base ortonormal para HH.
b. El complemento ortogonal de HH
c. La proyección del vector (1221)\begin{pmatrix} \begin{array}{rr} 1&2\\2&-1 \end{array} \end{pmatrix} sobre HH.

Publicado por

Fernando Tenesaca

rtenese@espol.edu.ec | FCNM - ESPOL