Tema 2

Examen | 2019-2020 | Término 2 | Primera Evaluación | Tema 2

Sea V=M2(R)V=M_2(\mathbb{R}) el espacio vectorial real, de todas las matrices cuadradas de orden 22, con entradas reales y las operaciones usuales de adición y multiplicación por un escalar para matrices. Sean H={(abcd):abcd=0}\small{H=\begin{Bmatrix} \begin{pmatrix} a&b\\c&d \end{pmatrix} : a-b-c-d=0 \end{Bmatrix}} y W=gen{(1100),(0011)}\small{W=gen\begin{Bmatrix} \begin{pmatrix} 1&1\\0&0 \end{pmatrix},\begin{pmatrix} 0&0\\1&1 \end{pmatrix} \end{Bmatrix}} dos subespacios de M2(R)M_2(\mathbb{R}). Determine, de ser posible:

a) Si (0001)H+W\begin{pmatrix} 0&0\\0&1 \end{pmatrix} \in H+W.
b) Bases BHWB_{H\cap W}, BH+WB_{H+W} y BVB_V para los subespacios HWH\cap W, H+WH+W y VV, respectivamente; de tal forma que BHWBB+WBVB_{H\cap W}\subseteq B_{B+W} \subseteq B_V.

Publicado por

Fernando Tenesaca

rtenese@espol.edu.ec | FCNM - ESPOL