cl2-03. Combinación Lineal


Definición. Sean v1,v2,v3,...,vnv_{\mathrm{1}},v_{\mathrm{2}},v_{\mathrm{3}},...,v_{\mathrm{n}} vectores en un espacio vectorial VV, entonces cualquier vector de la forma:α1v1+α2v2+α3v3+...+αnvn\alpha_1 v_1+\alpha_2 v_2+\alpha_3 v_3+...+\alpha_n v_ndonde α1,α2,α3,...,αn\alpha_1,\alpha_2,\alpha_3,...,\alpha_n son escalares, se denomina una Combinación Lineal de v1,v2,v3,...,vnv_1,v_2,v_3,...,v_n.

Esto es, un vector vv se puede escribir como combinación lineal de v1,v2,v3,...,vnv_{\mathrm{1}},v_{\mathrm{2}},v_{\mathrm{3}},...,v_{\mathrm{n}} si existen escalares α1,α2,α3,...,αn\alpha_1,\alpha_2,\alpha_3,...,\alpha_n tales quev=α1v1+α2v2+α3v3+...+αnvnv=\alpha_1 v_1+\alpha_2 v_2+\alpha_3 v_3+...+\alpha_n v_n

Ejemplo. En R3\mathbb{R^3} sean:v=(223) v1=(121) v2=(102)v=\left(\begin{array}{r} 2 \\ 2\\ 3 \end{array}\right)\ v_1=\left(\begin{array}{r} 1 \\ 2 \\ 1 \end{array}\right)\ v_2=\left(\begin{array}{r} 1 \\ 0\\ 2 \end{array}\right)Determine si vv es una combinación lineal de los vectores v1v_1 y v2v_2.

Solución. Para determinar si el vector vv es una combinación lineal de los vectores v1v_1 y v2v_2 se debe determinar la existencia de valores para α1\alpha_1 y α2\alpha_2 tales que:α1(121)α2(102)=(223)\alpha_1\left(\begin{array}{r} 1 \\ 2 \\ 1\end{array}\right)\oplus\alpha_2\left(\begin{array}{r} 1 \\ 0 \\ 2 \end{array}\right)=\left(\begin{array}{r} 2 \\ 2 \\ 3 \end{array}\right) A continuación, se plante el sistema de ecuaciones lineales correspondiente y se procede a resolver.{2α13α2=22α1=2α1+2α2=3\left\{ \begin{array}{rcl}2\alpha_1-3\alpha_2&=&2 \\ 2\alpha_1&=&2 \\ \alpha_1+2\alpha_2&=&3 \end{array}\right.Al resolver el sistema de ecuaciones lineales se obtiene como resultado que α1=1\alpha_1=1 y α2=1\alpha_2=1.

Por consiguiente, el vector vv es una combinación lineal de los vectores v1v_1 y v2v_2; es decir, v=v1v2v=v_1\oplus v_2.


Enlaces de interés

Clase Online
Plataforma SIDWeb
Referencias Bibliográficas

Publicado por

Fernando Tenesaca

rtenese@espol.edu.ec | FCNM - ESPOL