s1Eva2022PAOI_T3 Interpolar crecimiento de contagios

Ejercicio: 1Eva2022PAOI_T3 Interpolar crecimiento de contagios

Día del mes181522
Contagios15.62743.5

a) Realice el planteamiento del sistema de ecuaciones que se usaría usando el método de interpolación polinómica.

El modelo de polinomio de grado máximo que se puede obtener es grado 3:

p_3(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3

por lo que usando los valores de los puntos dados en la tabla:

p_3(1) = a_0 + a_1 (1) + a_2 (1)^2 + a_3 (1)^3 = 1 p_3(8) = a_0 + a_1 (8) + a_2 (8)^2 + a_3 (8)^3 = 5.6 p_3(15) = a_0 + a_1 (15) + a_2 (15)^2 + a_3 (15)^3 = 27 p_3(22) = a_0 + a_1 (22) + a_2 (22)^2 + a_3 (22)^3 = 43.5

b) Realice el planteamiento del sistema de ecuaciones en su forma matricial y muestre la matriz aumentada.

\begin{pmatrix} 1 & 1 & 1^2 & 1^2\\ 1 & 8 & 8^2 & 8^3 \\ 1 & 15 & 15^2 & 15^3 \\ 1 & 22 & 22^2 & 22^3 \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix} \begin{pmatrix} 1 \\ 56 \\ 27 \\43.5 \end{pmatrix}

matriz aumentada,

\begin{pmatrix} 1 & 1 & 1^2 & 1^2 & 1 \\ 1 & 8 & 8^2 & 8^3 & 56 \\ 1 & 15 & 15^2 & 15^3 & 27\\ 1 & 22 & 22^2 & 22^3 & 43.5\end{pmatrix}

c) Desarrolle el pivoteo parcial por filas, indicando las operaciones realizadas en éste proceso

pivoteo parcial por filas

\begin{pmatrix} 1 & 1 & 1^2 & 1^2 & 1 \\ 1 & 22 & 22^2 & 22^3 & 43.5 \\ 1 & 15 & 15^2 & 15^3 & 27 \\ 1 & 8 & 8^2 & 8^3 & 56\end{pmatrix}

d) Usando el método directo de Gauss-Jordan, muestre las expresiones necesarias para el algoritmo.

eliminación hacia adelante

\begin{pmatrix} 1 & 1 & 1^2 & 1^2 & 1 \\ 1-1 & 22-1 & 22^2-1^2 & 22^3 -1^3& 43.5 - 1\\ 1-1 & 15-1 & 15^2 -1^2& 15^3 -1^3& 27 -1\\ 1-1 & 8-1 & 8^2 -1^2& 8^3 -1^3& 56-1\end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 21 & 483 & 10647& 42.5 \\ 0 & 14 & 224 & 3376& 26\\ 0 & 7 & 63& 511 & 55\end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 21 & 483 & 10647& 42.5 \\ 0 & 14-\frac{14}{21} 21 & 224-\frac{14}{21}483& 3376 -\frac{14}{21}10647& 26-\frac{14}{21}42.5\\ 0 & 7-\frac{7}{21}21 & 63-\frac{7}{21}483& 511-\frac{7}{21}10647 & 55-\frac{7}{21}42.5\end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 21 & 483 & 10647& 42.5 \\ 0 & 0 &-98 & -3722& -2.33 \\ 0 & 0 & -98 & -3038 & 40.83 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 21 & 483 & 10647& 42.5 \\ 0 & 0 &-98 & -3722& -2.33 \\ 0 & 0 & -98-\frac{98}{-98}98 & -3038 -\frac{98}{-98}3722& 40.83 -\frac{98}{-98}(-2.33)\end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 21 & 483 & 10647& 42.5 \\ 0 & 0 &-98 & -3722& -2.33 \\ 0 & 0 & 0 & 686 & -7.23\end{pmatrix}

realizando el proceso de eliminación hacia atrás, semejante al método anterior se obtiene

\begin{pmatrix} 1 & 0 & 0 & 0 & 2.98\\ 0 & 1 & 0 & 0& -2.39 \\ 0 & 0 & 1 & 0 & 0.424 \\ 0 & 0 & 0 &1 & -0.0105\end{pmatrix}

con lo que el vector resultado es:

X= [2.98, -2.39, 0.42, -0.0105]

El polinomio de interpolación resultante es:

p(t)= 2.98 -2.39 t + 0.42 t^2 -0.0105 t^3
interpola contagios 01

e) Para el día 19 se encuentra que el valor correspondiente a contagios es de 37%. Estime el error presentado del modelo para ese día.

p(19)= 2.98 -2.39 (19) + 0.42 (19)^2 -0.0105 (19)^3 = 38.42 error = |38.42-37| = 1.42

f) Desarrolle el ejercicio usando otro método para encontrar el polinomio de interpolación.

usando diferencias finitas

Tabla Diferencia Finita
[['i', 'xi', 'fi', 'df1', 'df2', 'df3', 'df4']]
[[  0.    1.    1.    4.6  16.8 -21.7   0. ]
 [  1.    8.    5.6  21.4  -4.9   0.    0. ]
 [  2.   15.   27.   16.5   0.    0.    0. ]
 [  3.   22.   43.5   0.    0.    0.    0. ]]

polinomio:

p(t) = 1+\frac{4.6}{1! (7)}(t-1) + + \frac{16.8}{2!(7^2)}(t-1)(t-8) + +\frac{-21.7}{3!(7^3}(t-1)(t-8)(t-15)

Algoritmo en Python

Para literal f

# Polinomio interpolación
# Diferencias finitas avanzadas
# Tarea: Verificar tamaño de vectores,
#        verificar puntos equidistantes en x

import numpy as np
import math
import sympy as sym
import matplotlib.pyplot as plt

# INGRESO , Datos de prueba
xi = np.array([1,8,15,22],dtype=float)
fi = np.array([1,5.6,27,43.5],dtype=float)

# PROCEDIMIENTO

# Tabla de Diferencias Finitas
titulo = ['i','xi','fi']
n = len(xi)
ki = np.arange(0,n,1)
tabla = np.concatenate(([ki],[xi],[fi]),axis=0)
tabla = np.transpose(tabla)

# diferencias finitas vacia
dfinita = np.zeros(shape=(n,n),dtype=float)
tabla = np.concatenate((tabla,dfinita), axis=1)

# Calcula tabla, inicia en columna 3
[n,m] = np.shape(tabla)
diagonal = n-1
j = 3
while (j < m):
    # Añade título para cada columna
    titulo.append('df'+str(j-2))
    # cada fila de columna
    i = 0
    while (i < diagonal):
        tabla[i,j] = tabla[i+1,j-1]-tabla[i,j-1]
        i = i+1
    diagonal = diagonal - 1
    j = j+1

# POLINOMIO con diferencias Finitas avanzadas
# caso: puntos equidistantes en eje x
h = xi[1] - xi[0]
dfinita = tabla[0,3:]
n = len(dfinita)

# expresión del polinomio con Sympy
x = sym.Symbol('x')
polinomio = fi[0]
for j in range(1,n,1):
    denominador = math.factorial(j)*(h**j)
    factor = dfinita[j-1]/denominador
    termino = 1
    for k in range(0,j,1):
        termino = termino*(x-xi[k])
    polinomio = polinomio + termino*factor

# simplifica multiplicando entre (x-xi)
polisimple = polinomio.expand()

# polinomio para evaluacion numérica
px = sym.lambdify(x,polisimple)

# Puntos para la gráfica
muestras = 101
a = np.min(xi)
b = np.max(xi)
pxi = np.linspace(a,b,muestras)
pfi = px(pxi)

# SALIDA
print('Tabla Diferencia Finita')
print([titulo])
print(tabla)
print('dfinita: ')
print(dfinita)
print('polinomio: ')
print(polinomio)
print('polinomio simplificado: ' )
print(polisimple)

# Gráfica
plt.plot(xi,fi,'o', label = 'Puntos')
##for i in range(0,n,1):
##    plt.axvline(xi[i],ls='--', color='yellow')
plt.plot(pxi,pfi, label = 'Polinomio')

plt.legend()
plt.xlabel('xi')
plt.ylabel('fi')
plt.title('Interpolación polinómica')
plt.show()

Ejemplos - Ejercicios resueltos de Métodos Numéricos