s2Eva2019TII_T1 Canteras y urbanizaciones

Ejercicio: 2Eva2019TII_T1 Canteras y urbanizaciones

Literal a. área de cantera

xi55851953053907801170
f(xi)7528258861130108613911219

Para proceder se calculan los tamaños de paso, h, en cada intervalo:

dxi3011011085390390___
Ics = \frac{30}{2}(752+825) + \frac{110}{2}(825+886) + + \frac{110}{2}(1130+886) + \frac{85}{2}(1130+1086) + \frac{390}{2}(1086+1391) +\frac{390}{2}(1391+1219)

que tiene como resultado: Ics = 1342435.0

xi55...70570585085010101170
f(xi)260...2605507418558551055

Para proceder se calculan los tamaños de paso, h, en cada intervalo:

dxi650...0.01450.0160160____

Se observa que existen rectángulos en los intervalos, por lo que se simplifica la fórmula.

Ici = (650)(260) + \frac{145}{2}(741+550) + + (160)(855) + \frac{160}{2}(1055+855)

cuyo resultado es: Ici =552197.5

El área correspondiente a la cantera es:

Icantera = Ics -Ici =1342435.0 - 552197.5 = 790237.5


Literal b. área de urbanización

La frontera inferior está referenciada a la eje x con g(x)=0, por lo que solo es necesario realizar el integral para la frontera superior. El valor de la integral de la frontera inferior de la urbanización es cero.

xi72080089089011701220
g(xi)527630630760760533
dxi80900.028050____
Ius = \frac{80}{2}(527+630) + (90)(630) + + (280)(760) + \frac{50}{2}(760+533)

El valor del área de la urbanización es:

Iu = Ius - Iui = 348105.0 - 0 = 348105.0


literal c

Se pude mejora la precisión para los intervalos donde el tamaño de paso es igual, sin necesidad de aumentar o quitar puntos.

Cantera Urbaniza gráfica

Observando los tamaños de paso en cada sección se sugiere usar el método de Simpson de 1/3 donde existen dos tamaños de paso iguales y de forma consecutiva.

Cantera - frontera superior: en el intervalo xi= [85,195,305] donde h es= 110

Cantera - frontera inferior: en el intervalo xi = [850,110,1170] donde h es= 160


Algoritmo con Python

Para trapecios en todos los intervalos. Considera que si es un rectángulo, la fórmula del trapecio también funciona.

# 2Eva_IIT2019_T1 Canteras y urbanizaciones
import numpy as np
import matplotlib.pyplot as plt

# Funciones para integrar realizadas en clase
def itrapecio (xi,fi):
    n=len(fi)
    integral=0
    for i in range(0,n-1,1):
        h = xi[i+1]-xi[i]
        darea = (h/2)*(fi[i]+fi[i+1])
        integral = integral + darea 
    return(integral)

# INGRESO
# Canteras - frontera superior
xcs = [  55.,  85, 195,  305,  390,  780, 1170]
ycs = [ 752., 825, 886, 1130, 1086, 1391, 1219]
# Canteras - frontera inferior
xci = [ 55., 705, 705, 850, 850, 1010, 1170]
yci = [260., 260, 550, 741, 855,  855, 1055]

# Urbanización - frontera superior
xus = [720., 800, 890, 890, 1170, 1220]
yus = [527., 630, 630, 760,  760,  533]
# Urbanización - frontera inferior
xui = [720., 1220]
yui = [  0.,    0]

# PROCEDIMIENTO

# Area de cantera
Ics = itrapecio(xcs,ycs)
Ici = itrapecio(xci,yci)
Icantera = Ics-Ici

# Area de urbanización
Iurb = itrapecio(xus,yus)

# SALIDA
print('Area canteras: ',Icantera)
print('Area urbanización: ', Iurb)

# Gráfica canteras
plt.plot(xcs,ycs,color='brown')
plt.plot(xci,yci,color='brown')
plt.plot([xci[0],xcs[0]],[yci[0],ycs[0]],color='brown')
plt.plot([xci[-1],xcs[-1]],[yci[-1],ycs[-1]],color='brown')

# Gráfica urbanizaciones
plt.plot(xus,yus, color='green')
plt.plot(xui,yui, color='green')
plt.plot([xui[0],xus[0]],[yui[0],yus[0]], color='green')
plt.plot([xui[-1],xus[-1]],[yui[-1],yus[-1]], color='green')
plt.show()

Ejemplos - Ejercicios resueltos de Métodos Numéricos