7.2.3 EDP Elípticas - analítico iterativo con Sympy-Python

EDP Elípticas [ contínua a discreta ] || Sympy [ iterativo ] [ implícito ] [ gráfica_3D ]
..


1. Ejercicio

Referencia: Chapra 29.1 p866, Rodríguez 10.3 p425, Burden 12.1 p694

\frac{\partial ^2 u}{\partial x^2} + \frac{\partial ^2 u}{ \partial y^2} = 0

Valores de frontera: Ta = 60, Tb = 25, Tc = 50, Td = 70
Longitud en x0 = 0, xn = 2, y0 = 0, yn = 1.5
Tamaño de paso dx = 0.25, dy = dx
iteramax=100, tolera = 0.0001

(ecuación de Laplace, Ecuación de Poisson con f(x,y)=0)

EDP Elípticas [ contínua a discreta ] || Sympy [ iterativo ] [ implícito ] [ gráfica_3D ]

..


2. EDP Elípticas contínua a discreta

El resultado de las operaciones en la expresión usando el algoritmo es:

EDP Elíptica contínua a discreta
 ordenDx : 2
 ordenDy : 2

 edp=0 :
  2              2             
 ∂              ∂              
───(u(x, y)) + ───(u(x, y)) = 0
  2              2             
∂x             ∂y              
 K_ : 1

 discreta=0 :
-2⋅U(i, j) + U(i, j - 1) + U(i, j + 1)   -2⋅U(i, j) + U(i - 1, j) + U(i + 1, j)
────────────────────────────────────── + ──────────────────────────────────────
                   2                                        2                 
                 Dy                                       Dx                  
 Lambda_L :
  2
Dy 
───
  2
Dx 
 Lambda L_k : 1

 (discreta=0)*Dy**ordeny :
                                             2             2                 2
                                         2⋅Dy ⋅U(i, j)   Dy ⋅U(i - 1, j)   Dy ⋅ U(i + 1, j)
-2⋅U(i, j) + U(i, j - 1) + U(i, j + 1) - ───────────── + ─────────────── + ───────────────
                                                2                2                 2   
                                              Dx               Dx                Dx  

 discreta_L = 0 :
L⋅U(i - 1, j) + L⋅U(i + 1, j) + (-2⋅L - 2)⋅U(i, j) + U(i, j - 1) + U(i, j + 1) = 0

 discreta :
-4⋅U(i, j) + U(i, j - 1) + U(i, j + 1) + U(i - 1, j) + U(i + 1, j) = 0

discreta_iterativa
          U(i, j - 1) + U(i, j + 1) + U(i - 1, j) + U(i + 1, j)
U(i, j) = ─────────────────────────────────────────────────────
                                    4    

El desarrollo analítico inicia convirtiendo la ecuación diferencial parcial elíptica de la forma contínua a su representación discreta usando las expresiones de derivadas en  diferencias divididas. El cambio de la expresión se realiza usando  Sympy.

La EDP se escribe en formato Sympy en el bloque de ingreso.  La ecuación EDP se compone del lado izquierdo (LHS) y lado derecho (RHS), indicando u como una función de las variables x,y.

# INGRESO
fxy = 0*x+0*y # f(x,y) = 0 , ecuacion de Poisson
# ecuacion: LHS=RHS
LHS = sym.diff(u,x,2) + sym.diff(u,y,2)
RHS = fxy
EDP = sym.Eq(LHS-RHS,0)

las diferencias divididas se ingresan como un diccionario:

# centrada, centrada, atras
dif_dividida ={sym.diff(u,x,2): (U.subs(i,i-1)-2*U+U.subs(i,i+1))/(Dx**2),
               sym.diff(u,y,2): (U.subs(j,j-1)-2*U+U.subs(j,j+1))/(Dy**2),
               sym.diff(u,y,1): (U - U.subs(j,j-1))/Dy}

las condiciones iniciales en los bordes, pueden ser funciones matemáticas, por lo que se usa el formato lambda. En el ejercicio básico presentado en la parte teórica, los bordes tienen temperaturas constantes, por lo que en ésta sección se escriben las condiciones como la constante mas cero por la variable independiente, facilitando la evaluación de un vector xi por ejemplo.

# Condiciones iniciales en los bordes
fya = lambda y: 60 +0*y  # izquierda
fyb = lambda y: 25 +0*y  # derecha
fxc = lambda x: 50 +0*x  # inferior, función inicial 
fxd = lambda x: 70 +0*x  # superior, función inicial 

los demás parámetros del ejercicio se ingresan más adelante de forma semejante al ejercicio con Numpy.

Todas las expresiones se escriben al lado izquierdo (LHS) de la igualdad, la parte del lado derecho(RHS) se la prefiere mantener en cero. La expresión se organiza manteniendo el coeficiente en 1 para el termino de Dx de mayor orden. Se sustituyen las derivadas por diferencias divididas, para luego simplificar la expresión usando λ como referencia.

Instrucciones en Python

Los resultados al aplicar una operación a la expresión se guardan en un diccionario, para revisar cada paso intermedio al final

# Ecuaciones Diferenciales Parciales Elipticas
# EDP Elípticas contínua a discreta con Sympy
import numpy as np
import sympy as sym

# u(x,y) funciones continuas y variables simbólicas usadas
x = sym.Symbol('x',real=True)
y = sym.Symbol('y',real=True)
u = sym.Function('u')(x,y) # funcion
f = sym.Function('f')(x,y) # funcion complemento
# U[i,j] funciones discretas y variables simbólicas usadas
i  = sym.Symbol('i',integer=True,positive=True) # indices
j  = sym.Symbol('j',integer=True,positive=True)
Dx = sym.Symbol('Dx',real=True,positive=True)
Dy = sym.Symbol('Dy',real=True,positive=True)
L  = sym.Symbol('L',real=True)
U  = sym.Function('U')(i,j)

# INGRESO
fxy = 0*x+0*y  # f(x,y) = 0 , ecuacion de Poisson
# ecuacion edp : LHS=RHS
LHS = sym.diff(u,x,2) + sym.diff(u,y,2)
RHS = fxy
edp = sym.Eq(LHS-RHS,0)

# centrada, centrada, atras
dif_dividida ={sym.diff(u,x,2): (U.subs(i,i-1)-2*U+U.subs(i,i+1))/(Dx**2),
               sym.diff(u,y,2): (U.subs(j,j-1)-2*U+U.subs(j,j+1))/(Dy**2),
               sym.diff(u,y,1): (U - U.subs(j,j-1))/Dy}

# Condiciones iniciales en los bordes
fya = lambda y: 60 +0*y  # izquierda
fyb = lambda y: 25 +0*y  # derecha
fxc = lambda x: 50 +0*x  # inferior 
fxd = lambda x: 70 +0*x  # superior 

# dimensiones de la placa
x0 = 0    # longitud en x
xn = 2
y0 = 0    # longitud en y
yn = 1.5
# muestreo en ejes, discreto, supone dx=dy
dx = 0.25  # Tamaño de paso
dy = dx # supone dx=dy
iteramax = 100 # revisa convergencia
tolera = 0.0001

verdigitos = 2      # para mostrar en tabla de resultados
casicero = 1e-15    # para redondeo de términos en ecuacion

# PROCEDIMIENTO
def edp_discreta(edp,dif_dividida,x,y,u):
    ''' EDP contínua a discreta, usa diferencias divididas
        proporcionadas en parámetros, indica las variables x,y
        con función u de (x,y)
    '''
    resultado={}
    # expresión todo a la izquierda LHS (Left Hand side)
    LHS = edp.lhs
    RHS = edp.rhs
    if not(edp.rhs==0):
        LHS = LHS-RHS
        RHS = 0
        edp = sym.Eq(LHS,RHS)
    # orden de derivada por x, y
    edp_x = edp.subs(x,0)
    edp_y = edp.subs(y,0)
    ordenDx = sym.ode_order(edp_x,u)
    ordenDy = sym.ode_order(edp_y,u)
    resultado['ordenDx'] = ordenDx  # guarda en resultados
    resultado['ordenDy'] = ordenDy
    # coeficiente derivada orden mayor a 1 (d2u/dx2)
    coeff_x = edp_coef_Dx(edp,x,ordenDx)
    if not(coeff_x==1):
        LHS = LHS/coeff_x
        RHS = RHS/coeff_x
    edp = sym.Eq(LHS,RHS)
    K_ = edp_coef_Dx(edp,y,ordenDy)
    if abs(K_)%1<casicero: # si es entero
        K_ = int(K_)
    resultado['edp=0']  = edp
    resultado['K_']  = K_
    
    discreta = edp.lhs  # EDP discreta
    for derivada in dif_dividida: # reemplaza diferencia dividida
        discreta = discreta.subs(derivada,dif_dividida[derivada])
    resultado['discreta=0'] = discreta
    return (resultado)

def edp_coef_Dx(edp,x,ordenx):
    ''' Extrae el coeficiente de la derivada Dx de ordenx
    edp es la ecuación como lhs=rhs
    '''
    coeff_x = 1.0 # valor inicial
    # separa cada término de suma
    term_suma = sym.Add.make_args(edp.lhs)
    for term_k in term_suma:
        if term_k.is_Mul: # mas de un factor
            factor_Mul = sym.Mul.make_args(term_k)
            coeff_temp = 1; coeff_usar=False
            # separa cada factor de término 
            for factor_k in factor_Mul:
                if not(factor_k.is_Derivative):
                    coeff_temp = coeff_temp*factor_k
                else: # factor con derivada de ordenx
                    partes = factor_k.args
                    if partes[1]==(x,ordenx):
                        coeff_usar = 1
            if coeff_usar==True:
                coeff_x = coeff_x*coeff_temp
    return(coeff_x)

def redondea_coef(ecuacion, precision=6,casicero = 1e-15):
    ''' redondea coeficientes de términos suma de una ecuacion
    ecuación como lhs=rhs
    '''
    tipo = type(ecuacion)
    tipo_eq = False
    if tipo == sym.core.relational.Equality:
        RHS = ecuacion.rhs
        ecuacion = ecuacion.lhs
        tipo = type(ecuacion)
        tipo_eq = True

    if tipo == sym.core.add.Add: # términos suma de ecuacion
        term_sum = sym.Add.make_args(ecuacion)
        ecuacion = sym.S.Zero # vacia
        for term_k in term_sum:
            # factor multiplicativo de termino suma
            term_mul = sym.Mul.make_args(term_k)
            producto = sym.S.One
            for factor in term_mul:
                if not(factor.has(sym.Symbol)): # es numerico
                    factor = np.around(float(factor),precision)
                    if (abs(factor)%1)<casicero: # si es entero
                        factor = int(factor)
                producto = producto*factor
            ecuacion = ecuacion + producto
    
    if tipo == sym.core.mul.Mul: # termino único, busca factores
        term_mul = sym.Mul.make_args(ecuacion)
        producto = sym.S.One
        for factor in term_mul:
            if not(factor.has(sym.Symbol)): # es numerico
                factor = np.around(float(factor),precision)
                if (abs(factor)%1)<casicero: # si es entero
                    factor = int(factor)
            producto = producto*factor
        ecuacion = producto
    
    if tipo == float: # # solo un numero
        if (abs(ecuacion)%1)<casicero: 
            ecuacion = int(ecuacion)
    if tipo_eq==True: # era igualdad, integra lhs=rhs
        ecuacion = sym.Eq(ecuacion,RHS)
    
    return(ecuacion)

def edp_simplificaLamba(resultado,dx,dy):
    '''simplifica ecuacion con valores de lambda, dx y dy
    entregando la edp discreta simplificada
    '''
    discreta = resultado['discreta=0']
    ordenDy = resultado['ordenDy']
    ordenDx = resultado['ordenDx']
    K_ = resultado['K_']
    lamb = (Dy**ordenDy)/(Dx**ordenDx)
    if ordenDy==1 and ordenDx==2:
        lamb = lamb/K_
    resultado['Lambda_L'] = lamb
    # valor de Lambda en ecuacion edp
    L_k = lamb.subs([(Dx,dx),(Dy,dy)])
    if abs(L_k)%1<casicero: # si es entero
        L_k = int(L_k)
    resultado['Lambda L_k'] = L_k
    # simplifica con lambda L
    discreta_L = sym.expand(discreta*(Dy**ordenDy),mul=True)
    resultado['(discreta=0)*Dy**ordeny'] = discreta_L
    discreta_L = edp_sustituye_L(resultado)
    discreta_L = discreta_L.subs(lamb,L)
    discreta_L = sym.collect(discreta_L,U)
    discreta_L = sym.Eq(discreta_L,0)
    resultado['discreta_L = 0'] = discreta_L
    # sustituye constantes en ecuación a iterar
    discreta_L = discreta_L.subs([(Dx,dx),(Dy,dy),(L,L_k)])
    discreta_L = redondea_coef(discreta_L)
    resultado['discreta'] = discreta_L
    return(resultado)

def edp_sustituye_L(resultado):
    ''' sustituye lambda con Dy**ordeny/Dx**x/K_
    por L, al simplificar Lambda
    '''
    discreta = resultado['(discreta=0)*Dy**ordeny']
    ordenDy = resultado['ordenDy']
    ordenDx = resultado['ordenDx']
    discreta_L = 0
    # separa cada término de suma
    term_suma = sym.Add.make_args(discreta)
    for term_k in term_suma:
        # busca partes de L y cambia por valor L
        cambiar = False # por orden de derivada
        if term_k.has(Dx) and term_k.has(Dy):
            partes = term_k.args
            ordeny=1
            ordenx=1
            for unaparte in partes:    
                if unaparte.has(Dy):
                    if unaparte.is_Pow:
                        partey = unaparte.args
                        ordeny = partey[1]
                if unaparte.has(Dx):
                    if unaparte.is_Pow:
                        partey = unaparte.args
                        ordenx = partey[1]
            if (ordeny<=ordenDy and ordenx<=-ordenDx):
                cambiar=True
        if cambiar==True:
            term_k = term_k*L/resultado['Lambda_L']
        discreta_L = discreta_L + term_k
        # simplifica unos con decimal a entero 
        discreta_L = redondea_coef(discreta_L)
    return(discreta_L)

# PROCEDIMIENTO -------------------------------
# transforma edp continua a discreta
resultado = edp_discreta(edp,dif_dividida,x,y,u)
resultado = edp_simplificaLamba(resultado,dx,dy)
discreta = resultado['discreta']

# SALIDA
np.set_printoptions(precision=verdigitos)
algun_numero = [int,float,str,'Lambda L_k']
print('EDP Elíptica contínua a discreta')
for entrada in resultado:
    tipo = type(resultado[entrada])
    if tipo in algun_numero or entrada in algun_numero:
        print('',entrada,':',resultado[entrada])
    else:
        print('\n',entrada,':')
        sym.pprint(resultado[entrada])

EDP Elípticas [ contínua a discreta ] || Sympy [ iterativo ] [ implícito ] [ gráfica_3D ]
..


3. EDP Elípticas - Método iterativo con Sympy-Python

El desarrollo del método iterativo para una ecuación diferencial parcial elíptica usando Sympy, sigue a continuación del anterior.

Se añaden las instrucciones para iterar la expresión discreta para cada i,j dentro de la matriz U creada para el ejercicio. Se aplican las condiciones iniciales a los bordes, para luego proceder a iterar.

Como en las actividades del curso se requiere realizar al menos 3 iteraciones para las expresiones del algoritmo con papel y lápiz, solo se presentarán los resultados para la primera fila en j=0

Los resultados del algoritmo  luego del resultado del algoritmo anterior se presentan como:

discreta_iterativa
          U(i, j - 1) + U(i, j + 1) + U(i - 1, j) + U(i + 1, j)
U(i, j) = ─────────────────────────────────────────────────────
                                    4                          

 iterar i,j:
j:  1  ;  i:  1
          U(0, 1)   U(1, 0)   U(1, 2)   U(2, 1)
U(1, 1) = ─────── + ─────── + ─────── + ───────
             4         4         4         4   
U(1, 1) = 53.125
j:  1  ;  i:  2
          U(1, 1)   U(2, 0)   U(2, 2)   U(3, 1)
U(2, 1) = ─────── + ─────── + ─────── + ───────
             4         4         4         4   
U(2, 1) = 51.40625
j:  1  ;  i:  3
          U(2, 1)   U(3, 0)   U(3, 2)   U(4, 1)
U(3, 1) = ─────── + ─────── + ─────── + ───────
             4         4         4         4   
U(3, 1) = 50.9765625
j:  1  ;  i:  4
          U(3, 1)   U(4, 0)   U(4, 2)   U(5, 1)
U(4, 1) = ─────── + ─────── + ─────── + ───────
             4         4         4         4   
U(4, 1) = 50.869140625
j:  1  ;  i:  5
          U(4, 1)   U(5, 0)   U(5, 2)   U(6, 1)
U(5, 1) = ─────── + ─────── + ─────── + ───────
             4         4         4         4   
U(5, 1) = 50.84228515625
j:  1  ;  i:  6
          U(5, 1)   U(6, 0)   U(6, 2)   U(7, 1)
U(6, 1) = ─────── + ─────── + ─────── + ───────
             4         4         4         4   
U(6, 1) = 50.8355712890625
j:  1  ;  i:  7
          U(6, 1)   U(7, 0)   U(7, 2)   U(8, 1)
U(7, 1) = ─────── + ─────── + ─────── + ───────
             4         4         4         4   
U(7, 1) = 44.271392822265625

Método iterativo EDP Elíptica
continuar el desarrollo con: 
xi: [0.   0.25 0.5  0.75 1.   1.25 1.5  1.75 2.  ]
yj: [0.   0.25 0.5  0.75 1.   1.25 1.5 ]
 j, U[i,j]
2 [60.   51.25 51.25 51.25 51.25 51.25 51.25 51.25 25.  ]
1 [60.   53.12 51.41 50.98 50.87 50.84 50.84 44.27 25.  ]
0 [50. 50. 50. 50. 50. 50. 50. 50. 50.]

Se pueden sustituir los valores de las expresiones, evaluando cada u[i,j] y completando la matriz y para la gráfica. Esta parte queda como tarea.

Instrucciones en Python

Las instrucciones adicionales al algoritmo de EDP elíptica contínua a discreta empiezan con la creación de la matriz u_xy para los valores, los vectores xi,yj y una matriz u_mask que indica si se dispone de  un valor calculado o conocido en ese punto (x,y) . Para el método iterativo, la matriz se rellena con el promedio de los valores máximos de las funciones dadas para los bordes de la placa.

Tarea: El algoritmo desarrolla el cálculo para j_k=1, solo la primera fila. Se deja como tarea desarrollar para toda la matriz.

# ITERAR para cada i,j dentro de U ------------
# x[i] , y[j]  valor en posición en cada eje
xi = np.arange(x0,xn+dx/2,dx)
yj = np.arange(y0,yn+dy/2,dy)
n = len(xi)
m = len(yj)

# Matriz U 
u_xy = np.zeros(shape=(n,m),dtype = float)
u_xy = u_xy*np.nan # valor inicial dentro de u
# llena u con valores en fronteras
u_xy[0,:]   = fya(yj)  # izquierda Ta
u_xy[n-1,:] = fyb(yj)  # derecha   Tb
u_xy[:,0]   = fxc(xi)  # inferior  Tc
u_xy[:,m-1] = fxd(xi)  # superior  Td
u0 = np.copy(u_xy)     # matriz u inicial

# u_mask[i,j] con valores iniciales o calculados:True
u_mask = np.zeros(shape=(n,m),dtype=bool)
u_mask[0,:]  = True # izquierda
u_mask[-1,:] = True # derecha
u_mask[:,0]  = True # inferior
u_mask[:,-1] = True # superior

# valor inicial de iteración dentro de u
# promedio = (Ta+Tb+Tc+Td)/4
promedio = (np.max(fya(yj))+np.max(fyb(yj))+\
            np.max(fxc(xi))+np.max(fxd(xi)))/4
u_xy[1:n-1,1:m-1]   = promedio
u_mask[1:n-1,1:m-1] = True
u0 = np.copy(u_xy) # copia para revisión

def edp_sustituyeValorU(discreta,xi,yj,u_xy,u_mask):
    '''Sustituye en edp discreta los valores conocidos de U[i,j]
    tomados desde u_xy, marcados con u_mask
    u_mask indica si el valor se ha calculado con edp.
    '''
    LHS = discreta.lhs # lado izquierdo de ecuacion
    RHS = discreta.rhs # lado derecho
    # sustituye U[i,j] con valores conocidos
    A_diagonal = [] # lista de i,j para matriz de coeficientes A
    # Separa términos suma
    term_suma = sym.Add.make_args(LHS)
    for term_k in term_suma:
        # busca U[i,j] y cambia por valor uxt[i,j]
        cambiar = False ; cambiar_valor = 0 ; cambiar_factor = 0
        # separa cada factor de término
        factor_Mul = sym.Mul.make_args(term_k)
        for factor_k in factor_Mul:
            # busca U[i,j] en matriz uxt[i,j]
            if factor_k.is_Function:
                [i_k,j_k] = factor_k.args
                if not(np.isnan(u_xy[i_k,j_k])):
                    cambiar = u_mask[i_k,j_k]
                    cambiar_factor = factor_k
                    cambiar_valor = u_xy[i_k,j_k]
                else:
                    A_diagonal.append([i_k,j_k,term_k/factor_k])
        # encontró valor U[i,j],term_k va a la derecha de ecuación
        if cambiar==True:
            LHS = LHS - term_k
            term_ki = term_k.subs(cambiar_factor,cambiar_valor)
            RHS = RHS - term_ki
    discreta = sym.Eq(LHS,RHS)
    B_diagonal = RHS
    resultado = [discreta,A_diagonal,B_diagonal]
    return (resultado)

# Método iterativo para EDP Elíptica
# separa término U[j,j] del centro,con valor no conocido
buscar = U.subs(j,j)
discreta = sym.solve(discreta,buscar)
discreta = sym.factor_terms(discreta[0])
discreta = sym.Eq(buscar,discreta)
resultado['discreta_iterativa'] = discreta

print('\ndiscreta_iterativa')
sym.pprint(discreta)

# Desarrollo de iteraciones en cada nodo i,j, para la fila j_k
# genera el valor en cada punto
# Nota: Solo la primera fila, Tarea desarrollar para la matriz
print('\n iterar i,j:')
j_k = 1
for i_k in range(1,n-1,1):
    print('j: ',j_k,' ; ','i: ',i_k)
    discreta_ij = discreta.subs({i:i_k,j:j_k,
                                 x:xi[i_k],y:yj[j_k]})
    sym.pprint(discreta_ij)
    RHS = discreta_ij.rhs
    discreta_ij = sym.Eq(RHS,0)
    # usa valores de frontera segun u_mask con True
    discreta_k = edp_sustituyeValorU(discreta_ij,
                                    xi,yj,u_xy,u_mask)
    u_xy[i_k,j_k] = sym.Float(-discreta_k[2])
    print(buscar.subs({i:i_k,j:j_k}),
          '=',u_xy[i_k,j_k])
    
# SALIDA
np.set_printoptions(precision=verdigitos)
print('\nMétodo iterativo EDP Elíptica')
print('continuar el desarrollo con: ')
print('xi:',xi)
print('yj:',yj)
print(' j, U[i,j]')
for j_k in range(2,-1,-1):
    print(j_k, (u_xy[:,j_k]))

EDP Elípticas [ contínua a discreta ] || Sympy [ iterativo ] [ implícito ] [ gráfica_3D ]
..


Grafica en 3D para EDP Elípticas

A partir de la solución en matriz U_xy, Xi, Yi

# GRAFICA en 3D ------
import matplotlib.pyplot as plt
# Malla para cada eje X,Y
Xi, Yi = np.meshgrid(xi, yj)
U_xy = np.transpose(u_xy) # ajuste de índices fila es x

fig_3D = plt.figure()
graf_3D = fig_3D.add_subplot(111, projection='3d')
graf_3D.plot_wireframe(Xi,Yi,U_xy,
                       color ='blue')
graf_3D.plot(Xi[1,0],Yi[1,0],U_xy[1,0],'o',color ='orange')
graf_3D.plot(Xi[1,1],Yi[1,1],U_xy[1,1],'o',color ='red',
             label='U[i,j]')
graf_3D.plot(Xi[1,2],Yi[1,2],U_xy[1,2],'o',color ='salmon')
graf_3D.plot(Xi[0,1],Yi[0,1],U_xy[0,1],'o',color ='green')
graf_3D.plot(Xi[2,1],Yi[2,1],U_xy[2,1],'o',color ='salmon')
graf_3D.set_title('EDP elíptica')
graf_3D.set_xlabel('x')
graf_3D.set_ylabel('y')
graf_3D.set_zlabel('U')
graf_3D.legend()
graf_3D.view_init(35, -45)
plt.show()

EDP Elípticas [ contínua a discreta ] || Sympy [ iterativo ] [ implícito ] [ gráfica_3D ]