Tema 4

Examen | 2018-2019 | Término 2 | Primera Evaluación | Tema 4

Sea VV el espacio vectorial de las matrices diagonales de orden 22, con entradas reales. Se tiene, para VV, las bases A={(1001),(1001)}\footnotesize{A=\left\{\left(\begin{array}{rr}1 & 0 \\0 & 1 \end{array}\right) , \left(\begin{array}{rr}1 & 0 \\0 & -1 \end{array}\right) \right\}} y B={(200α),(1002)}\footnotesize{B=\left\{\left(\begin{array}{rr}2 & 0 \\0 & \alpha \end{array}\right) , \left(\begin{array}{rr}1 & 0 \\0 & -2 \end{array}\right) \right\} }.

a) Si la matriz de transición de la base BB a la base AA es PBA=(2120m)\footnotesize{P_{BA}=\left(\begin{array}{rr}2 & - \frac{1}{2} \\0 & m \end{array}\right) } determine, de ser posible, los valores de mm y α\alpha.
b) Si [v]A=(12)[v]_A=\footnotesize{\left(\begin{array}{r}1 \\ 2 \end{array}\right)} determine [v]B[v]_B.
c) Determine el vector vv.

Publicado por

Fernando Tenesaca

rtenese@espol.edu.ec | FCNM - ESPOL