Tema 4

Examen | 2019-2020 | Término 2 | Primera Evaluación | Tema 4

Se define la función T:RR2T:\mathbb{R}\longrightarrow \mathbb{R}^2 por T(a)=(a2,a)T(a)=(a-2,a), entre los espacios vectoriales reales (R,,)(\mathbb{R},\oplus,\odot) y (R2,,)(\mathbb{R}^2,\boxplus,\boxdot), cuyas operaciones están definida por:ab=a+b1,a,bRka=kak+1,kKaR(a1,b1)(a2,b2)=(a1+a2+1,b1+b21),(a1,b1),(a2,b2)R2k(a,b)=(ka+k1,kbk+1),kK(a,b)R2\begin{aligned} a\oplus b &= a+b-1 , \forall a,b\in \mathbb{R}\\ k\odot a &= ka-k+1 , \forall k\in \mathbb{K}\enspace \forall a\in \mathbb{R} \\ (a_1,b_1)\boxplus (a_2,b_2) &= (a_1+a_2+1,b_1+b_2-1), \forall (a_1,b_1),(a_2,b_2)\in \mathbb{R}^2 \\ k\boxdot(a,b) &= (ka+k-1,kb-k+1), \forall k\in \mathbb{K}\enspace \forall (a,b)\in \mathbb{R}^2 \end{aligned}Determine, de ser posible:

a) Si T(ab)=T(a)T(b),a,bRT(a\oplus b)=T(a)\boxplus T(b), \forall a,b\in \mathbb{R}.
b) Si T(λa)=λT(a),λ,aRT(\lambda \odot a)=\lambda \boxdot T(a), \forall \lambda, a\in \mathbb{R}.
c) El elemento neutro de la adición en R\mathbb{R}.
d) El elemento neutro de la adición en R2\mathbb{R}^2.
e) La imagen del elemento neutro de la adición en R\mathbb{R}.
f) Si TT es una transformación lineal.

Publicado por

Fernando Tenesaca

rtenese@espol.edu.ec | FCNM - ESPOL