Tema 5

Examen | 2018-2019 | Término 1 | Primera Evaluación | Tema 5

Sean B1={v1,v2,v3}B_1=\{v_1,v_2,v_3\} y B2={u1,u2,u3}B_2=\{u_1,u_2,u_3\} bases ordenadas del espacio vectorial VV. Suponga que:[cos2x]B1=(111)[sinx]B1=(101)[sin2x]B1=(021)[u1u2]B1=(011)[u1+u2]B1=(211)[u1+u2+u3]B1=(201)\begin{array} {rrr} {[\cos^2 x]_{B_1}=\begin{pmatrix} \begin{array}{r} 1\\1\\1 \end{array} \end{pmatrix}} & {[\sin x]_{B_1}=\begin{pmatrix} \begin{array}{r} 1\\0\\1 \end{array} \end{pmatrix}} \\ \\ {[\sin^2 x]_{B_1}=\begin{pmatrix} \begin{array}{r} 0\\2\\1 \end{array} \end{pmatrix}} \\ \\ {[u_1 - u_2]_{B_1}=\begin{pmatrix} \begin{array}{r} 0\\1\\1 \end{array} \end{pmatrix}} & {[u_1 + u_2]_{B_1}=\begin{pmatrix} \begin{array}{r} -2\\1\\-1 \end{array} \end{pmatrix}} \\ \\ {[u_1 + u_2 + u_3]_{B_1}=\begin{pmatrix} \begin{array}{r} 2\\0\\-1 \end{array} \end{pmatrix}} \end{array}Determine:

5.1. La matriz de cambio de base de B2B_2 a B1B_1.
5.2. Los vectores de la base B1B_1.
5.3. Los vectores de la base B2B_2

Tema 4

Examen | 2018-2019 | Término 1 | Primera Evaluación | Tema 4

Sea M2×2(R)\mathbb{M_{2\times 2}}(\mathbb{R}) el espacio vectorial real de las matrices de orden 2×22\times 2 con entradas reales. Sea SS el subconjunto de todas las matrices en M2×2(R)\mathbb{M_{2\times 2}}(\mathbb{R}) cuya suma de los elementos de cada fila es cero y la suma de los elementos de cada columna es cero. Demuestre que SS es un subespacio de M2×2(R)\mathbb{M_{2\times 2}}(\mathbb{R}).

Tema 3

Examen | 2018-2019 | Término 1 | Primera Evaluación | Tema 3

Sea P3(R)\mathbb{P_3}(\mathbb{R}) el espacio vectorial de los polinomios de coeficientes reales de grado menor o igual a 33. Considere HH y WW subespacios de VV tales que H=gen{x21,x3}H=gen\{x^2-1,x^3\} y W=gen{5,x3x2}W=gen\{5,x^3-x^2\}.Determine:

3.1. Una base B1B_1 para el subespacio HWH\cap W e indique su dimensión.
3.2. Una base B2B_2 para el subespacio H+WH + W.
3.3. Una base para P3(R)\mathbb{P_3}(\mathbb{R}) que contenga a B2B_2.
3.4. Si el vector 1x+x22x31-x+x^2-2x^3 pertenece a H+WH+W.

Tema 2

Examen | 2018-2019 | Término 1 | Primera Evaluación | Tema 2

El estadio de Kaliningrado (Arena Baltika) en Rusia, con capacidad para setenta y dos mil espectadores1, está lleno durante la celebración del partido entre Inglaterra y Bélgica. Unos espectadores son hinchas del equipo de Inglaterra, otros del equipo de Bélgica y el resto no son hinchas de ningún equipo. A través de la venta de boletos se sabe lo siguiente:

No hay espectadores que sean hinchas de los dos equipos simultáneamente.
Por cada trece hinchas de alguno de los dos equipos hay tres espectadores que no son hinchas.
Los hinchas del equipo de Bélgica superan en seis mil quinientos a los hinchas de Inglaterra.

¿Cuántos hinchas de cada equipo hay en el estadio viendo partido?

1. Capacidad hipotética planteada para el ejercicio. Aforo real 33.973 espectadores sentados en la Copa Mundial de la FIFA.

Tema 1

Examen | 2018-2019 | Término 1 | Primera Evaluación | Tema 1

A continuación se presentan cinco enunciados, cada uno de los cuales tienen cuatro posibles opciones correctas (más de una puede ser correcta en cada caso). Marque, con una XX, aquella o aquellas opciones correctas.

Literal a. Dado el sistema de ecuaciones (1110a20000)(xyz)=(11b+1)\begin{pmatrix}1&1&1\\0&a-2&0\\0&0&0\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}1\\1\\b+1\end{pmatrix}se cumple que:

a.1. No es posible hallar valores de aa,bb tales que el sistema tenga solución única.
a.2. Si aRa\in \mathbb{R} y b1b\neq-1 el sistema tiene infinitas soluciones.
a.3. Si a2a\neq 2 y b1b\neq-1 el sistema tiene infinitas soluciones.
a.4. Si a2a\neq 2 y b=1b=-1 el sistema tiene infinitas soluciones.

Literal b. Sea (V,K)(V,\mathbb{K}) un espacio vectorial sobre un campo K\mathbb{K}. Si W1W_1 y W2W_2 son subespacios de VV, entonces se cumple que:

b.1. W1W2W1W2W1+W2W_1 \cap W_2 \subseteq W_1 \cup W_2 \subseteq W_1 + W_2.
b.2. Si W1+W2W_1 + W_2 es un subespacio vectorial de VV, entonces W1W2W_1 \cup W_2 siempre es un subespacio de VV.
b.3. W1+W2W_1 + W_2 es el menor subespacio que contiene a W1W2W_1 \cup W_2.
b.4. W1W2W_1 \cap W_2, W1+W2W_1 + W_2 son subespacios.

Literal c. Dada la matriz B=(240012000012)B=\begin{pmatrix}\begin{array} {rrrr} 2&-4&0&0 \\ -1&2&0&0 \\ 0&0&1&2 \end{array}\end{pmatrix}, se cumple que:

c.1. El vector(4,2,3)T(4,-2,-3)^T está en el espacio columna de BB.
c.2. La nulidad de BB es 22.
c.3. Todo vector de la forma (2y,y,z)T(-2y,y,z)^T, con y,zRy,z\in \mathbb{R}, pertenece a la imagen de BB.
c.4. El vector(4,2,3)T(4,-2,-3)^T está en el núcleo de BB.

Literal d. Considerando V={(a,b,c,1)T:aR+b,cR}V=\{(a,b,c,1)^T : a\in\mathbb{R^+}\enspace b,c\in\mathbb{R}\} con las operaciones(abc1)(abc1)=(aab+b+5c+c1)\begin{pmatrix}a\\b\\c\\1\end{pmatrix} \oplus \begin{pmatrix}a'\\b'\\c'\\1\end{pmatrix}=\begin{pmatrix}aa'\\b+b'+5\\c+c'\\1\end{pmatrix}α(abc1)=(aααb+5α5αc1)\alpha \odot \begin{pmatrix}a\\b\\c\\1\end{pmatrix}=\begin{pmatrix}a^\alpha\\\alpha b+5\alpha-5\\ \alpha c\\1\end{pmatrix}se cumple que:

d.1. Dados (a,b,c,1)T(a,b,c,1)^T, (a,b,c,1)T(a',b',c',1)^T en VV, se tiene que(abc1)(abc1)\begin{pmatrix}a\\b\\c\\1\end{pmatrix} \oplus \begin{pmatrix}a'\\b'\\c'\\1\end{pmatrix} es un número real positivo.
d.2. El elemento neutro para la adición en VV es (1501)\begin{pmatrix}\begin{array} {r} 1\\-5\\0\\1 \end{array} \end{pmatrix}.
d.3. Si (a,b,c,d)TV(a,b,c,d)^T \in V, entonces su elemento opuesto es (1ab10c1)\begin{pmatrix} \frac{1}{a} \\-b-10\\c\\1\end{pmatrix}.
d.4. 2(1031)=(1561)2 \odot \begin{pmatrix}1\\0\\3\\1\end{pmatrix}=\begin{pmatrix}1\\5\\6\\1\end{pmatrix}.

Literal e. Sea (V,K)(V,\mathbb{K}) un espacio vectorial sobre un campo K\mathbb{K} y B={v1,v2,v3}B=\{v_1,v_2,v_3\} una base para VV, entonces se cumple que:

e.1. {v1,v2,v3}\{v_1,v_2,v_3\} es un conjunto linealmente independiente en VV.
e.2. {v1+2v2}\{v_1+2v_2\} es es un conjunto linealmente independiente en VV.
e.3. gen{v1,2v1}gen\{v_1,2v_1\} es un subespacio de VV.
e.4. Existe una base de VV que contiene al conjunto {v1+v2,v2+v3}\{v_1+v_2,v_2+v_3\}